• Title/Summary/Keyword: Low-dose Computed Tomography

Search Result 117, Processing Time 0.02 seconds

Diagnostic efficacy of a modified low-dose acquisition protocol for the preoperative evaluation of mini-implant sites

  • Tadinada, Aditya;Marczak, Alana;Yadav, Sumit
    • Imaging Science in Dentistry
    • /
    • v.47 no.3
    • /
    • pp.141-147
    • /
    • 2017
  • Purpose: The objective of this study was to compare the outcomes of surgical mini-implant placement when potential mini-implant sites were scanned using a lower-dose $180^{\circ}$ acquisition protocol versus a conventional $360^{\circ}$ acquisition protocol. Materials and Methods: Ten dentate human skulls were used to provide sites for potential mini-implant placement. The sites were randomly divided into 2 groups: $360^{\circ}$ and $180^{\circ}$ cone-beam computed tomography (CBCT) acquisition protocols. A small-volume $180^{\circ}$ CBCT scan and a $360^{\circ}$ CBCT scan of each site were acquired using a Morita Accuitomo-170 CBCT machine and then a mini-implant was placed. A follow-up $360^{\circ}$ CBCT scan was done as a gold standard to evaluate the location of the mini-implant and root perforation. Two raters evaluated the scans. Results: Ninety-eight percent of the mini-implants placed did not perforate any root structure. Two percent of the sites had an appearance suggestive of perforation. On a Likert scale, both raters agreed that their subjective evaluation of the diagnostic quality of the protocols, ability to make and read measurements of the sites, and preferences for the specified diagnostic task were comparable. The Cohen kappa showed high inter-rater and intrarater agreement. Conclusion: In this ex vivo study, we found that the $180^{\circ}$ rotational acquisition was as effective as the conventional $360^{\circ}$ rotational acquisition for the preoperative evaluation of potential mini-implant sites.

Low Contrast and Low kV CTA Before Transcatheter Aortic Valve Replacement: A Systematic Review

  • Spencer C. Lacy;Mina M. Benjamin;Mohammed Osman;Mushabbar A. Syed;Menhel Kinno
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.2
    • /
    • pp.108-115
    • /
    • 2023
  • BACKGROUND: Minimizing contrast dose and radiation exposure while maintaining image quality during computed tomography angiography (CTA) for transcatheter aortic valve replacement (TAVR) is desirable, but not well established. This systematic review compares image quality for low contrast and low kV CTA versus conventional CTA in patients with aortic stenosis undergoing TAVR planning. METHODS: We performed a systematic literature review to identify clinical studies comparing imaging strategies for patients with aortic stenosis undergoing TAVR planning. The primary outcomes of image quality as assessed by the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were reported as random effects mean difference with 95% confidence interval (CI). RESULTS: We included 6 studies reporting on 353 patients. There was no difference in cardiac SNR (mean difference, -1.42; 95% CI, -5.71 to 2.88; p = 0.52), cardiac CNR (mean difference, -3.83; 95% CI, -9.98 to 2.32; p = 0.22), aortic SNR (mean difference, -0.23; 95% CI, -7.83 to 7.37; p = 0.95), aortic CNR (mean difference, -3.95; 95% CI, -12.03 to 4.13; p = 0.34), and ileofemoral SNR (mean difference, -6.09; 95% CI, -13.80 to 1.62; p = 0.12) between the low dose and conventional protocols. There was a difference in ileofemoral CNR between the low dose and conventional protocols with a mean difference of -9.26 (95% CI, -15.06 to -3.46; p = 0.002). Overall, subjective image quality was similar between the 2 protocols. CONCLUSIONS: This systematic review suggests that low contrast and low kV CTA for TAVR planning provides similar image quality to conventional CTA.

Evaluation of Skin Dose and Image Quality on Cone Beam Computed Tomography (콘빔CT 촬영 시 mAs의 변화에 따른 피부선량과 영상 품질에 관한 평가)

  • Ahn, Jong-Ho;Hong, Chae-Seon;Kim, Jin-Man;Jang, Jun-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose: Cone-beam CT using linear accelerator attached to on-board imager is a image guided therapy equipment. Because it is to check the patient's set-up error, correction, organ and target movement. but imaging dose should be cause of the secondary cancer when taking a image. The aim of this study is investigation of appropriate cone beam CT scan mode to compare and estimate the image quality and skin dose. Materials and Methods: Measurement by Thermoluminescence dosimeter (TLD-100, Harshaw) with using the Rando phantom are placed on each eight sites in seperately H&N, thoracic, abdominal section. each 4 methods of scan modes of are measured the for skin dose in three time. Subsequently, obtained average value. Following image quality QA protocol of equipment manufacturers using the catphan 504 phantom, image quality of each scan mode is compared and analyzed. Results: The results of the measured skin dose are described in here. The skin dose of Head & Neck are measured mode A: 8.96 cGy, mode B: 4.59 cGy, mode C: 3.46 cGy mode D: 1.76 cGy and thoracic mode A: 9.42 cGy, mode B: 4.58 cGy, mode C: 3.65 cGy, mode D: 1.85 cGy, and abdominal mode A: 9.97 cGy, mode B: 5.12 cGy, mode C: 4.03 cGy, mode D: 2.21 cGy. Approximately, dose of mode B are reduced 50%, mode C are reduced 60%, mode D are reduced 80% a point of reference dose of mode A. the results of analyzed HU reproducibility, low contrast resolution, spatial resolution (high contrast resolution), HU uniformity in evaluation item of image quality are within the tolerance value by recommended equipment manufacturer in all scan mode. Conclusion: Maintaining the image quality as well as reducing the image dose are very important in cone beam CT. In the result of this study, we are considered when to take mode A when interested in soft tissue. And we are considered to take mode D when interested in bone scan and we are considered to take mode B, C when standard scan. Increasing secondary cancer risk due to cone beam CT scan should be reduced by low mAs technique.

  • PDF

Measurement of Radiation Dose of HR CT and Low Dose CT by using Anthropomorphic Chest Phantom and Glass Dosimetry (인체등가형 흉부팬텀과 유리선량계를 이용한 고해상력 및 저선량 CT의 선량측정)

  • Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.933-939
    • /
    • 2019
  • The purpose of this study is to provide basic clinical data by evaluating images, measuring absorbed dose and effective dose by using high resolution CT and low dose CT by using anthropomorphic chest phantom and glass dosimeter. Tissue dose was measured by inserting a glass dosimeter into the anthropomorphic chest phantom. A 64-slice CT system (SOMATOM Sensation 64, Siemens AG, Forchheim, Germany) and CARE Dose 4D were used, and the parameters of the high resolution CT were 120 kVp, Eff. Scan parameters of mAs 104, scan time 7.93 s, slice 1.0 mm (Acq. 64 × 0.6 mm), convolution kernel (B60f sharp) were used, and low dose CT was 120 kVp, Eff. mAs 15, scan time 7.41 s, slice 3.0 mm (Acq. 64 × 0.6 mm), scan of convolution kernel B50f medium sharp. CTDIvol was measured at 8.01 mGy for high resolution CT and 1.18 mGy for low dose CT. Low dose CT scans showed 85.49% less absorbed dose than high resolution CT scans.

Assessing Commercial CLEANBOLUS Based on Silicone for Clinical Use

  • Son, Jaeman;Jung, Seongmoon;Park, Jong Min;Choi, Chang Heon;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.159-164
    • /
    • 2021
  • Purpose: We investigated the properties of CLEANBOLUS based on silicone with suitable characteristics for clinical use. Methods: We evaluated the characteristics of CLEANBOLUS and compared the results with the commercial product (Super-Flex bolus). Also, we conducted physical evaluations, including shore hardness, element composition, and elongation break. Transparency was investigated through the measured absorbance within the visible region (400-700 nm). Also, dosimetric characteristics were investigated with surface dose and beam quality. Finally, the volume of unwanted air gap was investigated based on computed tomography images for breast, chin, and nose using Super-Flex bolus and CELANBOLUS. Results: CLEANBOLUS showed excellent physical properties for a low shore hardness (000-35) and elongation break (>1,000%). Additionally, it was shown that CLEANBOLUS is more transparent than Super-Flex bolus. Dosimetric results obtained through measurement and calculation have an electron density similar to water in CLEANBOLUS. Finally, CLEANBOLUS showed that the volume of unwanted air gap between the phantom and each bolus is smaller than Super-Flex bolus for breast, chin, and nose. Conclusions: The physical properties of CLEANBOLUS, including excellent adhesive strength and lower shore hardness, reduce unwanted air gaps and ensure accurate dose distribution. Therefore, it would be an alternative to other boluses, thus improving clinical use efficiency.

Evaluation of effective dose in panorama, cone beam CT and the usefulness of x-ray protective (치과방사선검사에서 방사선방어용구 사용 전, 후의 유효선량에 대한 평가)

  • Kim, Jae In;Choi, Won Keun;Lee, So La;Lee, Jung Hwa;Lee, Kwan Sub
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The purpose of this study was to measure the absorbed dose and calculate the effective dose for cone beam computed tomography (CBCT) and panorama units and to estimate usefulness of x-ray protective. Rando phantom and glass dosimeters were used for dosimetry. The absorbed doses were measured at 15 organs and 14 remainder from correspond to ICRP 2007 recommendations. The absorbed dose was highest in salivary glands as measured CBCT 2.420mGy, panorama 0.307mGy. Absorbed dose in another organs were high in order of thyroid, brain, skin, esophagus. The effective dose was CBCT 0.100mSv, panorama 0.011mSv and effective dose of panorama was higher than that of CBCT by 10 times. In case of wearing x-ray protective, reducing effective dose of CBCT by 0.066mSv (66%) and panorama by 0.008mSv (72%). Effective dose were reduced by radiological shielding but it needs further optimization studies, where dosimetric data are analyzed in combination with image quality with keep the patients' exposure as low as possible.

  • PDF

Dose and Image Evaluations of Imaging for Radiotherapy (방사선치료를 위한 영상장비의 선량 및 영상 평가)

  • Lee, Hyounggun;Yoon, Changyeon;Kim, Tae Jun;Kim, Dongwook;Chung, Weon Kyu;Park, Sung Ho;Lee, Wonho
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.292-302
    • /
    • 2012
  • The patient dose in advanced radiotherapy techniques is an important issue. These methods should be evaluated to reduce the dose in diagnostic imaging for radiotherapy. Especially, the Computed Tomography in radiotherapy has been used widely; hence the CT was evaluated for dose and image in this study. The evaluations for dose and image were done in equal condition due to compare the dose and image simultaneously. Furthermore, the possibility of dose and image evaluations by using the Monte Carlo simulation MCNPX was confirmed. We made the iterative reconstruction for low dose CT image to elevate image quality with Maximum Likelihood Expectation Maximization; MLEM. The system we developed is expected to be used not only to reduce the patient dose in radiotherapy, also to evaluate the overall factors of image modalities in industrial research.

Comprehensive Updates in the Role of Imaging for Multiple Myeloma Management Based on Recent International Guidelines

  • Koeun Lee;Kyung Won Kim;Yousun Ko;Ho Young Park;Eun Jin Chae;Jeong Hyun Lee;Jin-Sook Ryu;Hye Won Chung
    • Korean Journal of Radiology
    • /
    • v.22 no.9
    • /
    • pp.1497-1513
    • /
    • 2021
  • The diagnostic and treatment methods of multiple myeloma (MM) have been rapidly evolving owing to advances in imaging techniques and new therapeutic agents. Imaging has begun to play an important role in the management of MM, and international guidelines are frequently updated. Since the publication of 2015 International Myeloma Working Group (IMWG) criteria for the diagnosis of MM, whole-body magnetic resonance imaging (MRI) or low-dose whole-body computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography/CT have entered the mainstream as diagnostic and treatment response assessment tools. The 2019 IMWG guidelines also provide imaging recommendations for various clinical settings. Accordingly, radiologists have become a key component of MM management. In this review, we provide an overview of updates in the MM field with an emphasis on imaging modalities.

The Lowest Dose for CT Attenuation Correction in PET/CT

  • Kang, Byung-Sam;Son, Jin-Hyun;Park, Hoon-Hee;Dong, Kyung-Rae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.3
    • /
    • pp.111-115
    • /
    • 2011
  • PET/CT(Positron Emission Tomography/Computed Tomography) is an examination combining morphological and functional information in one examination. The purpose of this study is to see the lowest CT dose for attenuation correction in the PET/CT maintaining good image quality when considering CT scan dose to the patients. We injected $^{18}F$-FDG and water into the cylinder shaped phantom, and obtained emission images for 3 mins and transmission images(140 kVp, 8 sec, 10~200 mA for transmission images), and reconstructed the images to PET/CT images with Iterative method. Data(Maximum, Minimum, Average, Standard Deviation) were obtained by drawing a circular ROI(Region Of Interest) on each sphere in each image set with Image J program. And then described SD according to the CT and PEC/CT images as graphes. Through the graphes, we got the relationships of mA and quality of images. SDs according to CT graph were 16.25 at 10 mA, 7.26 at 50 mA, 5.5 at 100 mA, 4.29 at 150 mA, and 3.83 at 200 mA, i.e. the higer mA, the better image quality was presented. SDs according to PET/CT graph were 1823.2 at 10 mA, 1825.1 at 50 mA, 1828.4 at 100 mA, 1813.8 at 150 mA, and 1811.3 at 200 mA. Calculated SDs at PET/CT images were maintained. This means images quality is maintained having nothing to do with mA of high and low.

  • PDF

A study of image evaluation and exposure dose with the application of Tube Voltage and ASIR of Low dose CT Using Chest Phantom (흉부 Phantom을 이용한 Low Dose CT의 관전압과 ASIR(Adaptive Statistical Iterative Reconstruction)적용에 따른 영상평가 및 피폭선량에 관한 연구)

  • Hwang, Hyeseong;Kim, Nuri;Jeong, Yoonji;Goo, Eunhoe;Kim, Kijeong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.16 no.2
    • /
    • pp.9-14
    • /
    • 2014
  • Purpose: The purpose of this study has attempted to evaluate and compare the image evaluation and exposure dose by respectively applying Filtered Back Projection(FBP), the existing test method, and Adaptive Statistical Iterative Reconstruction(ASIR) with different values of tube voltage during the Low Dose Computed Tomography(LDCT). Materials and Methods: With the image reconstruction method as basis, Chest Phantom was utilized with the FBP and ASIR set at 10%, 20% respectively, and the change of Tube Voltage (100kVp, 120kVp). For image evaluation, Back ground noise, Signal to Noise ratio(SNR) and Contrast to Noise ratio(CNR) were measured, and, for dose evaluation, CTDIvol and DLP were measured respectively. The statistical analysis was tested with SPSS(ver. 22.0), followed by ANOVA Test conducted after normality test and homogeneity test. (p<0.05). Results: In terms of image evaluation, there was no outstanding difference in Ascending Aorta(AA) SNR and Infraspinatus Muscle(IM) SNR with the different values of ASIR application(p<0.05), but a significant difference with the different amount of tube voltage(p>0.05). Also, there wasn't noticeable change in CNR with ASIR and different amount of Tube Voltage (p<0.05). However, in terms of dose evaluation, CTDIvol and DLP showed contrasting results(p<0.05). In terms of CTDIvol, the measured values with the same tube voltage of 120kVp were 2.6mGy with No-ASIR and 2.17mGy with 20%-ASIR respectively, decreased by 0.43mGy, and the values with 100kVp were 1.61mGy with No-ASIR and 1.34mGy with 20%-ASIR, decreased by 0.27mGy. In terms of DLP, the measured values with 120kVp were $103.21mGy{\cdot}cm$ with No-ASIR and $85.94mGy{\cdot}cm$ with 20%-ASIR, decreased by $17.27mGy{\cdot}cm$(about 16.7%), and the values with 100kVp were $63.84mGy{\cdot}cm$ with No-ASIR and $53.25mGy{\cdot}cm$ with 20%-ASIR, a decrease by $10.62mGy{\cdot}cm$(about 16.7%). Conclusion: At lower tube voltage, the rate of dose significantly decreased, but the negative effects on image evaluation was shown due to the increase of noise. For the future, through the result of the experiment, it is considered that the method above would be recommended for follow-up patients or those who get health checkup as long as there is no interference on the process of diagnosis due to the characteristics of Low Dose examination.

  • PDF