• Title/Summary/Keyword: Low-cost silica fume

Search Result 5, Processing Time 0.019 seconds

Analysis of physical properties of high-performance concrete using domestic low-cost silica fume (국산 저가형 실리카퓸을 이용한 고성능 콘크리트의 물리적 특성 분석)

  • Kim, Sang Do;Yun, Kyung Ku;Ham, Seung Yeon;Lee, Kyeo Re
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.32-36
    • /
    • 2017
  • In this study, as part of a research on the development of economical high-performance concrete with high strength and high quality, the physical properties of high-performance concrete were analyzed by substituting a certain amount of low-cost domestic silica fume exempted from the re-importation type distribution structure of the domestic production and the existing high-priced silica fume distribution structure. Performing tests to identify the physical properties of the fresh and hardened concrete and durability analogy of the concrete which use low-cost domestic silica fume and imported silica fume, the chloride ion penetration resistance test result showed that the strength difference between the low-cost silica fume and the imported silica fume is not big but the strength of the low-cost silica fume was measured higher than the imported silica fume. The chloride ion penetration resistance of all variables was measured as "very low". Since the low-cost domestic silica fume can be used as a high-performance admixture of concrete, the results suggest that it is possible to produce a more economical high-performance concrete.

Effect of Silica Fume Types on the Mechanical Properties of Ultra-High Performance Concrete (실리카퓸 종류가 초고성능 콘크리트의 공학적 특성에 미치는 영향)

  • Park, Chun-Jin;Koh, Kyung-Teak;Ahn, Gi-Hong;Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.220-227
    • /
    • 2015
  • Ultra high performance concrete (UHPC) uses large quantities of steel fiber, silica fume, filler and superplasticizer for a low water-to-binder ratio (W/B). Despite of exceptional mechanical performances, UHPC exhibits increased viscosity due to the adoption of silica fume and its fabrication cost is costlier than ordinary concrete because of the use of large quantities of expensive materials. Following, this study evaluates the mechanical properties of 180MPa-UHPC using zirconium silica fume (Zr) instead of silica fume with respect to the quantity and type of superplasticizer (SP) and the size of filler. The results reveal that the Zr-UHPC using W/B of 20%, 100% of Zr, amount of SP-L of 2 to 3% and $4{\mu}m$-filler with steel fiber in 1.5 vol.% can develop better fluidity than the traditional mix composition using silica fume and secure a compressive strength higher than 180 MPa. In addition, the proposed mix composition is shown to enable a reduction of the fabrication cost by 33% compared to traditional UHPC.

Short and Long-Term Properties of High-Performance Concrete Containing Silica Fume for Bridge Deck Overlay (실리카퓸을 혼합한 교면 포장용 고성능 콘크리트의 단기 및 장기 성능 평가)

  • Won Jong-Pil;Seo Jung-Min;Lee Chang-Soo;Park Hae-Kyun;Lee Myeong-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.743-750
    • /
    • 2005
  • High performance concrete containing silica fume for use in bridge deck overlay emerged as a viable type of bridge deck overlay that economic advantage in construction. They have gained acceptance in Europe, America and Canada in a relatively short time due to their low cost. In this study, high-performance concretes containing silica fume were tested and evaluated in the laboratory to assess their applicability for use in bridge deck overlay. It was conducted with experiments of mechanical and durability characteristics in compressive strength, flexural strength, chloride permeability, abrasion resistance, repeated freezing and thawing cycles and deicing salt scaling resistance. Laboratory test result describe that high-performance concrete containing silica fume for bridge deck overlay application shows most outstanding capacity.

Flowability and mechanical characteristics of self-consolidating steel fiber reinforced ultra-high performance concrete

  • Moon, Jiho;Youm, Kwang Soo;Lee, Jong-Sub;Yun, Tae Sup
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.389-401
    • /
    • 2022
  • This study investigated the flowability and mechanical properties of cost-effective steel fiber reinforced ultra-high performance concrete (UHPC) by using locally available materials for field-cast application. To examine the effect of mixture constituents, five mixtures with different fractions of silica fume, silica powder, ground granulated blast furnace slag (GGBS), silica sand, and crushed natural sand were proportionally prepared. Comprehensive experiments for different mixture designs were conducted to evaluate the fresh- and hardened-state properties of self-consolidating UHPC. The results showed that the proposed UHPC had similar mechanical properties compared with conventional UHPC while the flow retention over time was enhanced so that the field-cast application seemed appropriately cost-effective. The self-consolidating UHPC with high flowability and low viscosity takes less total mixing time than conventional UHPC up to 6.7 times. The X-ray computed tomographic imaging was performed to investigate the steel fiber distribution inside the UHPC by visualizing the spatial distribution of steel fibers well. Finally, the tensile stress-strain curve for the proposed UHPC was proposed for the implementation to the structural analysis and design.

Tensile Properties and Adhesion of Hybrid-Type Anti-Corrosion Polymer Cement Slurry (하이브리드형 방식 폴리머 시멘트 슬러리의 인장특성 및 접착성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.635-642
    • /
    • 2008
  • In recent years, epoxy-coated reinforcing bars have been widely used in order to prevent the corrosion of ordinary reinforcing bar. However, they have a bad balance between performance and cost. Especially, they have a brittleness properties, low bond strength to cement concrete and no good bend-ability in the field. The purpose of this study is to evaluate the tensile properties and adhesion of hybrid-type anti-corrosion polymer cement slurry (PCS). PCSs are prepared with four types polymer dispersions using fly ash and silica fume, and tested for proper coating thickness, tensile properties, adhesion to steel plate and bend-ability. From the test results, the viscosity of PCS is effected by polymer dispersion types, and is a little decreased by using fly ash. The coating thickness of PCS has a proper thickness at polymer-binder ratio of 100%. It is apparent that the coating thickness has various values according to viscosity of PCS, water-binder ratio and polymer-binder rato. PCS has a good various anticorrosion properties and physical properties such as tensile strength, adhesion and bend-ability. It is also recommended that proper coating thickness to reinforcing bar is in the ranges of 150 to $250{\mu}m$ for bond strength, adhesion and bend-ability. It is also expected that the coated reinforcing bar using PCS is widely used instead of epoxy coated reinforcing bar in the industrial field.