• Title/Summary/Keyword: Low-carbon strategy

Search Result 116, Processing Time 0.028 seconds

Electrochemical Reduction of Perchlorate Ion on Porous Carbon Electrodes Deposited with Iron Nanoparticles (영가철 나노 입자가 전착된 다공성 탄소전극을 이용한 과염소산 이온의 전기화학적 환원)

  • Rhee, Insook;Kim, Eun Yong;Lee, Bokyoung;Paeng, Ki-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.81-85
    • /
    • 2015
  • A method for degradation of the perchlorate anion ($ClO{_4}^-$) has been studied using electrochemically generated zero-valent iron (ZVI) deposited on a porous carbon electrode. The first strategy of this study is to produce the ZVI via the electrochemical reduction of iron (II) on a porous carbon electrode coated with a conducting polymer, instead of employing expensive $NaBH_4$. The present method produced well distributed ZVI on conducting polymer (polypyrrole thin film) and increased surface area. ZVI surface can be regenerated easily for successive reduction. The second strategy is to apply a mild reducing condition (-0.3 V) to enhance the efficiency of the degradation of perchlorate with ZVI without the evolution of hydrogen. The electrochemically generated ZVI nanoparticles may offer an alternative means for the complete destruction perchlorate without evolution of hydrogen in water with high efficiency and at low cost.

Development and Application of Carbon Emissions Estimation Methodology During the Life Cycle of Road (도로의 전과정 탄소배출량 산정방법 개발 및 적용)

  • Kwak, In-Ho;Park, Kwang-Ho;Hwang, Young-Woo;Park, Ji-Hyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.382-390
    • /
    • 2012
  • Global warming has been hot issue world wide. Korea has been dealing with the global issue under the slogan of low carbon and green-growth such as setting national greenhouse gas (GHG) reduction targets and allocation to each industrial sector. Infrastructure construction, in which enormous social overhead capital (SOC) is input, has great role as one of the actions. Road is one of the representative infrastructure and large amount of resources is utilized in its construction, operation and maintenance stage. The estimation methodology of life cycle carbon emissions was developed and applied to a case study of highway currently under construction in this study. Also, total carbon emissions of all the highway in South Korea at present (2009) and cumulative carbon emissions from 2009 to 2020 were estimated using the results of case study.

Optimal Carbon Upcycling Technology Selection Method Considering Technology and Market (기술 및 시장을 고려한 최적 탄소자원화 기술 선정방법)

  • Ji Hyun Lee;Seong Jegarl;Jieun Jo
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.41-52
    • /
    • 2023
  • Various carbon upcycling technologies have been proposed and are under development to achieve Korea's carbon neutrality target. Many chemical reactions are under development through various chemical reaction pathways, and different technological maturity levels are shown for each country and company. In this situation, it is essential to establish investment decisions such as research funds and human resources allocation through technological and economic analysis for close commercialization technologies and basic technologies with low technology readiness levels (TRL). Therefore, in this study, the technology development priority for developing carbon upcycling items was selected according to the domestic Carbon Capture & Utilization (CCU) technology roadmap using the stakeholder selection tool released by EU CarbonNext. As a result of the analysis, the TRL level of Korea's major carbon upcycling technologies was analyzed to be lower than that of other carbon resource technologies, and it was considered desirable to invest in mineral carbonization technologies among various candidate technologies.

Design for Carbon Neutral Arboretum in Gwangju Metropolitan City (광주광역시 탄소중립 수목원 설계)

  • Kim, Hoon Hee
    • KIEAE Journal
    • /
    • v.9 no.3
    • /
    • pp.61-68
    • /
    • 2009
  • Gwangju Metropolitan Government & Ministry of Environment have signed a model city in response to Climate Change agreement. The agreement calls for Gwangju to cut greenhouse gas emissions 10% below 2005 levels by 2015. Gwangju has seen this agreement as an opportunity to cut pollution and conserve the environment as well as to reinvigorate local economy. According to policy of Gwangju, Gwangju held design competition for Gwangju City Arboretum on march, 2009. The purpose of design competition was to give a wide publicity to Gwangju as Hub City of Asian Culture and construct carbon-neutral arboretum in accordance with the policy of 'Low-Carbon and Green Growth'. First of all, a design concept of arboretum is 'winding, round, overlay 'to reflect the landscape of Nam-do which is surrounded by mountains and river flows through the village. Second, the arboretum has five different places with these themes - Forest of Festivals, Health, Nature, Nostalgia, Education and Future. Each place has a symbolic theme park and different flow planning respectively. Third, the most critical point is that the arboretum is a carbon-neutral park. Gwangju arboretum will soon be developed in metropolitan sanitary landfill and constructed as the O2 arboretum based on low carbon strategy. Fourth, the O2 arboretum suggests specialized issue : 'Energy Saving', 'Recycling System', 'Green Network', 'Water System(rainwater maintenance and wetland development)'. Besides, main buildings(greenhouse, visitor center, Nam-do experience exhibition hall, and forest museum) is designed in consideration of harmony with topography character, surroundings. Also, planting will be a multilayer plant based on native landscape trees in consideration of function and the growth characteristics.

Regenerating Condition Optimization of NGCC Combined Carbon Capture Process Simultaneously Considering Absorption and Regeneration Rates (흡수율과 재생율을 동시 고려한 천연가스복합발전 공정 연계 이산화탄소 포집 공정의 재생 조건 최적화)

  • Jeong Hun Choi;Young-Hwan Chu
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.368-377
    • /
    • 2023
  • Natural Gas Combined Cycle(NGCC) recently receives lots of attention as an attractive form of power plants by virtue of its low carbon emission compared with coal-fired power plant. Nevertheless, it also needs carbon capture process since it is difficult to completely suppress carbon emission even for the NGCC. A simulation study has been performed to optimize operating condition of a carbon capture process using MEA considering low partial pressure of carbon dioxide in NGCC emission gas. For accurate optimization, overall process model including both NGCC and the carbon capture process has been built with a simulation software. Then, optimization in which various performance indices such as carbon dioxide absorption rate, solvent regeneration rate and power loss in the NGCC are simultaneously reflected has been done. Especially, it is noticeable that this study focuses on not only the amount of energy consumption but also the absorption and regeneration performance of carbon capture process. The best result considering all the performance indices has been achieved when the reboiler temperature is 120 ℃ and the reason has been analyzed.

Estimation of Carbon Emissions and Energy Self-Sufficiency in Sewage Treatment plant's Improvement by using Life Cycle Management Tool (LCM 기법을 이용한 하수처리장 개선에 따른 탄소배출량 및 에너지 자립율 평가)

  • Moon, Jin-Young;Park, Ji-Hyoung;Hwang, Yong-Woo;Park, Kwang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.223-232
    • /
    • 2013
  • In this study, carbon emissions and energy consumption were evaluated to establish a design strategy which has low energy consumption and carbon emission production, by using life cycle energy (LCE) and life cycle $CO_2(LCCO_2)$ calculation methods in life cycle management(LCM) tools. After improvement design projects, the energy consumption and $CO_2$ emission were calculated and compared in three sewage treatment plants (STPs), which are A STP, B STP, and C STP. The reduction of carbon emissions was 28,020.1 ton $CO_{2-}e/yr$, 37,399.6 ton $CO_{2-}e/yr$ and 8,788.3 ton $CO_{2-}e/yr$, respectively. Production of energy was 792 TOE/yr, 1,235 TOE/yr and 1,023 TOE/yr, respectively. As a result, the estimation of energy and energy self-sufficiency was 5.1 %, 14.5 % and 23.5 %, respectively. The result of this study shows the LCM can be contributed to establish strategy for energy and carbon emission reduction in sewage treatment plants.

The Comparative Analysis for the Economic Value of the Southern Part Cropping System Introducing New Bio-energy Crops. (영.호남 작부체계의 바이오에너지용 신품종 도입시 경제적 가치 비교분석)

  • Kim, Chung-Sil;Lee, Hyun-Keun
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • The production of bio-energy crops is a major research project in the emphasizing the "low carbon green growth" strategy. For this, the possibility of the introduction of the new energy crops improve the agricultural income from fanning must be diagnosed. This study describes the level of agricultural income per unit area by cropping system based on the income of crops in the field. Especially, we have chosen the southern part attracting the attention in the possible area of the bio-energy crop production. This study consists of five chapters. Chapter I is the introduction. Chapter II is on the status of the southern part cropping system and the analysis of the economic value. Chapter III is on the economic value analysis introducing new bio-energy crops. Chapter IV is on the comparative analysis for the economic value of the croping system introducing new bio-energy crops. Chapter V is the conclusion.

  • PDF

Application of Carbon-13 NMR spectroscopy to the chemistry of natural products

  • Yamasaki, Kazuo
    • Archives of Pharmacal Research
    • /
    • v.3 no.1
    • /
    • pp.57-64
    • /
    • 1980
  • Carbon-13 NMR spectroscopy(abbreviated CMR) is an extremely powerful strategy for the study of natural organic molecules. The information derivable from CMR is often complementary to that obtianed form proton NMR spectroscopy (PMR). Because of low natural abundance of $^{13}C$ nucleus (1.1%) coupled with low inherent sensitivity relative to $^{1}H$ (about 1/64), CMR experiment is approximately 6000 times less sensitive than PMR. Despite of this, now it is possible to measure CMR of small amount of compound by the development of three significant ingenious techniques, i. e. a) computer time-averaging, b) wide-band (or noise modulated) proton decoupling, and c) pulsed Fourier transform (FT) NMR : For general recognition of CMR, its fundamental aspects of CMR are briefly reviewed.

  • PDF

Study on the Policy Priority for Low Carbon Green City (저탄소 녹색도시 조성을 위한 정책 우선순위 연구)

  • Shin, Yeon-Hee;Min, Mi-Youn;Hwang, Eun-Joo;Kim, Jong Dae
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.977-991
    • /
    • 2017
  • The purpose of this study is to establish common indicators that constitute a "low-carbon green city" and determine their priorities from the perspective of Incheon Metropolitan City with a view to help develop its climate change strategy strategic city. Several major cities, domestic and overseas, were benchmarked to come up with preliminary indicators consisting of six areas, twenty two planning factors, and 74 indicators. In order to evaluate the validity and relevance of preliminary indicators, expert FGI (Focus Group Interview) was conducted that changed the numbers of final indicators to six areas, twenty two planning factors, and 82 indicators. Finally, AHP (Analytic Hierarchy Process) was conducted to assign relative importance (i.e. weights) to each indicator. Through the layering process of AHP, the upper category of "field" and lower category of "planning factors" were set up as policy prerequisites for constructing a low-carbon green city (6 fields, 22 planning factors). The AHP results for the first level (fields), green city space was ranked first, followed by energy and resource circulation, green traffic, ecological preservation, green logistics, and governance. Among all planning factors, land use, energy efficiency, traffic system improvement, location planning, securing of ecological area, efficiency of logistics, and cooperative organization showed the highest priorities.

A Research on the Greenhouse Gas Emission Reduction of Railway Structure Construction Stage (건설단계에서의 철도시설물 온실가스저감방안연구)

  • Lee, Cheul-Kyu;Kim, Jong-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.425-432
    • /
    • 2011
  • Concrete was identified as the significant GHG emission source resulting from a GHG emission analysis of railway infrastructure. An environmental assessment method (life cycle assessment; LCA) and low carbon railway infrastructure design strategy development method (ECODESISGN PILOT) were applied to develop low carbon railway infrastructure design strategies. The railway infrastructure was analyzed as a raw material intensive industry emitting large amount of greenhouse gas (GHG) at its construction stage. Therefore, in this study, it is analyzed that current status of GHG emission at its construction stage, and a method reducing GHG emission of railway infrastructure is proposed. In this study, eco-concrete, concrete aging prevention agent and a low carbon railway route decision method based on a need of low carbon railway infrastructure construction technology application for green railway development were considered.