• Title/Summary/Keyword: Low-alloy Steel

Search Result 379, Processing Time 0.024 seconds

A Study on Liquid Phase Diffusion Bonding of STS304 using Cu-Mn-Si Insert alloy (Cu-Mn-Si Insert 합금을 이용한 스테인리스강의 액상확산접합에 관한 연구)

  • 임종태;안상욱
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.136-142
    • /
    • 1997
  • In this study, the amorphous foil filler, thickness of 20 - $20~30\mu\textrm{m}$ was made to develop Cu-7.5wt%Mn-7.5wt%Si insert alloy(melting point temperature : solidus line 1003K, liquidus line 1070K). Liquid phase diffusion bonding of 304 stainless steels (STS304), is carried out successfully by using developed Cu-7.5Mn-7.5Si insert alloy. Bonding conditions are taken from bonding pressure of 5MPa, bonding temperatures from 1073K to 1423K varied within 50K and brazing holding times of 0, 30, 60 and 240 minutes. As the results, the tensile strength in the liquid phase diffusion bonding is a little bit lower than that in the solid phase diffusion bonding. The authors find out that the liquid phase diffusion bonding needs lower bonding pressure than the others. Therefore, the liquid phase diffusion bonding had an excellent brazability in which the bonding process showed the typical mechanism of diffusion bonding. In corresponding, the new developed insert alloy of low melting pointed Cu-7.5Mn-7.5Si makes possible brazing between the STS304.

  • PDF

A study on the change of microstructural and mechanical properties by the long-term thermal aging of dissimilar metal welds in nuclear power plants (원전 이종금속 용접부의 장기 열적 시효에 따른 미세조직 및 기계적 특성변화에 관한 고찰)

  • Choi, Kyoung Joon;Yoo, Seung Chang;Kim, Ji Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.82-89
    • /
    • 2014
  • In this study, the metallurgical analysis and mechanical property measurement have been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at $450^{\circ}C$ for 2,750 hours. The microstructural characterization was conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy. And the mechanical properties were measured with Vickers microhardness test and nanoindentation method. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. Type-II boundaries were found in weld side of DMW and the hardness was the highest at the narrow zone between Type-II boundary and fusion boundary.

Manufacturing Process Design of Aluminum Alloy Bolt (알루미늄 합금 볼트의 제조 공정 설계)

  • Kim, Ji-Hwan;Chae, Soo-Won;Han, Seung-Sang;Son, Yo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.63-68
    • /
    • 2010
  • The use of aluminum alloy parts in the automotive industry has been increasing recently due to its low weight compared with steel to improve fuel efficiency. Companies in the auto parts' manufacturing sector are expected to meet the government's strict environmental regulations. In this study, manufacturing process of aluminum alloy bolt has been designed from forming to heat treatment. Bolt forming process is composed of cold forging for body and rolling for thread. In this study only cold forging process is considered by employing the finite element method. In the cold forging process, preform shape was designed and damage value was considered for die design. Two steps of forging process has been developed by the simulation and a prototype was manugactured accordingly. As a final process, solution heat treatment and aging process was employed. A final prototype was found to meet the required specifications of tensile strength and dimension.

Development of A Component and Advanced Model for The Smart PR-CFT Connection Structure (스마트 반강접 (PR) 콘크리트 충전 강재 합성 (CFT) 접합 구조물에 대한 해석모델의 개발)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This study investigates the performance of composite (steel-concrete) frame structures through numerical experiments on individual connections. The innovative aspects of this research are in the use of connections between steel beams and concrete-filled tube (CFT)columns that utilize a combination of low-carbon steel and shape memory alloy (SMA) components. In these new connections, the intent is to utilize the recentering provided by super-elastic shape memory alloy tension bars to reduce building damage and residual drift after a major earthquake. The low-carbon steel components provide excellent energy dissipation. The analysis and design of these structures is complicated because the connections cannot be modeled as being simply pins or full fixity ones they are partial restraint (PR). A refined finite element (FE) model with sophisticated three dimensional (3D) solid elements was developed to conduct numerical experiments on PR-CFT joints to obtain the global behavior of the connection. Based on behavioral information obtained from these FE tests, simplified connection models were formulated by using joint elements with spring components. The behavior of entire frames under cyclic loads was conducted and compared with the monotonic behavior obtained from the 3D FE simulations. Good agreement was found between the simple and sophisticated models, verifying the robustness of the approach.

Mechanical Properties of Fe-P-(Mo,Mn) Sintered Alloy Related with Si Contents (Fe-P-(Mo,Mn)계 소결분말 합금에서 Si 첨가에 따른 기계적 특성 변화에 대한 연구)

  • Jung, Woo-Young;Park, Dong-Kyu;Ko, Byung-Hyun;Park, Jin-Woo;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.397-401
    • /
    • 2016
  • A lean alloy is defined as a low alloy steel with a minimum amount of the alloying element that maintains the characteristics of the sintered alloy. It is well known that the addition of elements such as Cr, P, Si, or Mn improves the mechanical characteristics of the alloy, but decreases the sinterability. The mother alloy is used to avoid an oxidation reaction with the alloying elements of Cr, P, Si or Mn. The purpose of this study is to determine the change in the mechanical properties of Fe-P-Mo and Fe-P-Mn alloys as a result of the addition of Si. In this article, the Fe-P-Mo and Fe-P-Mn alloys to which Si is added are compacted at $7.0g/cm^3$ and then sintered in $H_2-N_2$ at $1120^{\circ}C$. The P around the macropores and large grains reduces due to the formation of $SiO_2$ as the Si content increases. This is caused by the increase in strength owing to reducing intergranular fracture by suppressing the reaction with oxygen.

Corrosion Assessment of Al/Fe Dissimilar Metal Joint (Al/Fe 이종금속 접합부의 부식특성)

  • Kang, Minjung;Kim, Cheolhee;Kim, Junki;Kim, Dongcheol;Kim, Jonghoon
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.55-62
    • /
    • 2014
  • The use of light-weight Al alloys in the automotive industry is increasing to meet requirements for fuel efficiency and emission reduction. Joining Al alloy to the conventional steel sheet is also very important issue with the increased use of Al alloy, and several joining processes have been introduced to enhance joining strength between dissimilar metals. This paper deals with a galvanic corrosion in the dissimilar metal joining. Salt spray tests up to 2000 hours were conducted on a self-piercing rivet, spot welded, adhesive bonded and weld-bonded joints, and cross-sections and tensile shear strength according the salt spray duration were analyzed at every 500-hour. Self-piercing rivet joint had relative low initial strength but the joint strength did not change regardless of the salt spray duration. The strength of other joints (spot welded, adhesive bonded and weld-bonded joints) decreased with the increase of salt spray duration and the corrosion behaviour of each joint was discussed.

Development of a (16~19)Cr Ferritic Cast Stainless Steel for a Flange Material of Automotive Exhaust Parts (자동차 배기계 플랜지용 16~19 wt.% 페라이트 주조용 스테인리스강 개발)

  • Jang, Hee-Jin;Beom, Won-Jin;Park, Chan-Jin
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.79-85
    • /
    • 2009
  • We aimed to develop a Fe-($16{\sim}19$)Cr-($0.1{\sim}0.6$)Ti-($0.1{\sim}0.6$)Nb stainless steel for automotive exhaust parts with high corrosion resistance. The alloys with high Cr content showed high resistance to general corrosion and also localized corrosion. The increase of Ti and Nb contents resulted in a linear increase in the general corrosion resistance, while the pitting potential was improved by addition of these elements up to about 0.4 wt.%. The low-carbon Fe-17Cr-0.4Ti-0.4Nb alloy annealed at $850^{\circ}C$ and air-cooled was considered to be the optimum alloy for our purpose with the critical anodic current density of $247{\mu}A/cm^2$ in 0.05 M $H_2SO_4$ solution and the pitting potential of 310 mVSCE in 0.2 M NaCl solution.

Recent updates for biomaterials used in total hip arthroplasty

  • Hu, Chang Yong;Yoon, Taek-Rim
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.259-270
    • /
    • 2018
  • Background: Total hip arthroplasty (THA) is probably one of the most successful surgical interventions performed in medicine. Through the revolution of hip arthroplasty by principles of low friction arthroplasty was introduced by Sir John Charnley in 1960s. Thereafter, new bearing materials, fixation methods, and new designs has been improved. The main concern regarding failure of THA has been the biological response to particulate polyethylene debris generated by conventional metal on polyethylene bearing surfaces leading to osteolysis and aseptic loosening of the prosthesis. To resolve these problems, the materials of the modern THA were developed since then. Methods: A literature search strategy was conducted using various search terms in PUBMED. The highest quality articles that met the inclusion criteria and best answered the topics of focus of this review were selected. Key search terms included 'total hip arthroplasty', 'biomaterials', 'stainless steel', 'cobalt-chromium', 'titanium', 'polyethylene', and 'ceramic'. Results: The initial search retrieved 6921 articles. Thirty-two articles were selected and used in the review. Conclusion: This article introduces biomaterials used in THA and discusses various bearing materials in currentclinical use in THA as well as the newer biomaterials which may even further decrease wear and improve THA survivorship.

Effect of Alloying Elements Si, S, Cu, Sn, and Ni on Oxidation of Low Carbon Steels between 1050 and 1180℃ in Air (저탄소강의 대기중 1050~1180℃의 산화에 미치는 합금원소 Si, S, Cu, Sn, Ni의 영향)

  • Bak, Sang Hwan;Lee, Dong Bok;Baek, Seon-Pil
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.749-756
    • /
    • 2010
  • Low carbon steels were oxidized isothermally at 1050 and $1180^{\circ}C$ for 4 hr in air in order to determine the effect of alloying elements Si, S, Cu, Sn, and Ni on oxidation. For oxidation resistance of low carbon steels, the beneficial elements were Si, Cu, and Ni, whereas the harmful elements were S and Sn. The most active alloying element, Si, was scattered inside the oxide scale, at the scale-alloy interface, and as an internal oxide precipitate. The relatively noble elements such as Cu and Ni tended to weakly segregate at the scale-alloy interface. Sulfur and Sn were weakly, uniformly distributed inside the oxide scale. Excessively thick, non-adherent scales containing interconnected pores formed at $1180^{\circ}C$.

Fatigue Crack Growth Rate Equation by Crack Closure (균열닫힘현상을 고려한 피로균열전파식)

  • 김용수;강동명;신근하
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.81-87
    • /
    • 1991
  • We propose the crack growth rate equation which will model fatigue crack growth rate behavior such that constant stress amplitude fatigue crack growth behavior can be predicted. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.2, R=0.4 and R=0.6. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. Through constant stress amplitude fatigue test by using unloading elastic compliance method, it is confirmed that crack closure is a close relationship with fatigue crack propagation. We describe simply fatigue crack propagation behavior as a function of the effective stress intensity factor range ($\Delta$ $K_{eff}$=U .$\Delta$K) for all three regions (threshold region, stable region). The fatigue crack growth rate equation is given by da / dN=A($\Delta$ $K_{eff}$­$\Delta$ $K_{o}$ )$^{m}$ / ($\Delta$ $K_{eff}$­$\Delta$K) Where, A and m are material constants, and $\Delta$ $K_{o}$ is stress intensity factor range at low $\Delta$K region. $K_{cf}$ is critical fatigue stress intensity factor.actor.

  • PDF