• 제목/요약/키워드: Low-Speed Friction Characteristics

검색결과 91건 처리시간 0.031초

마찰조건에 따른 고강도 강판의 마찰특성 평가 (Evaluation of Friction Characteristics for High-Strength-Steel Sheets Depending on Conditions)

  • 김주업;허재영;윤일채;송재선;윤국태;박춘달
    • 소성∙가공
    • /
    • 제24권6호
    • /
    • pp.381-386
    • /
    • 2015
  • Recently, high-strength-steel sheets have been used extensively for increasing fuel-efficiency and stability in automobiles. A study on the characteristics regarding friction factors is required because high-strength-steel sheets have higher contact pressure at the tool interface as compared to low-strength steel sheets. For the current study, a sheet friction test was used to examine the influence of several factors on friction. The friction tests were performed on two types of sheet steels (SPFC590 and SPFC980) to obtain friction coefficients as a function of contact pressure, surface roughness, lubricant viscosity, and speed. Based on the experimental results for SPFC590 and SPFC980, the friction coefficient decreased with increasing contact pressure, but the friction coefficient increased with increasing surface roughness. Also, the friction coefficient decreased with increasing lubricant viscosity and decreasing speed.

Twist Friction Driver의 이송특성에 관한 연구 (A Study on the Feed Characteristics of Twist Friction Driver)

  • 정준휘;이응석;안동율
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.934-939
    • /
    • 2004
  • This paper propose a study on the Feed Characteristics of Twist Friction Driver. We are using Twist Friction Driving mechanism system. The system consists of Twist Friction Driver elements such as driving shaft, driven roller, Spring for pre-load, Air bearing guide, Servo motor, and measuring devices such as Encoder of Servo motor, Laser interferometer, LVDT . The Twist Friction driver is mechanically simple and very quiet at high speed, and has low pre-load. So The Twist Friction driver can materialize an ultra precision feed-resolution. The feed characteristics of the driver is determined by slip and angular error, backlash.

  • PDF

Influence of different parameters on nonlinear friction-induced vibration characteristics of water lubricated stern bearings

  • Lin, Chang-Gang;Zou, Ming-Song;Zhang, Hai-Cheng;Qi, Li-Bo;Liu, Shu-Xiao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.746-757
    • /
    • 2021
  • To investigate the mechanism of friction-induced vibration and noise of ship water lubricated stern bearings, a two-degree-of-freedom (2-DOF) nonlinear self-excited vibration model is established. The novelty of this work lies in the detailed analysis of influence of different parameters on the stability and nonlinear vibration characteristics of the system, which provides a theoretical basis for the various friction vibration and noise phenomenon and has a very important directive meaning for low noise design of water lubricated stern bearings. The results reveal that the change of any parameter, such as rotating speed of shaft, contact pressure, friction coefficient, system damping and stiffness, has an important influence on the stability and nonlinear response of the system. The vibration amplitudes of the system increase as (a) rotating speed of shaft, contact pressure, and the ratio of static friction coefficient to dynamic friction coefficient increase and (b) the transmission damping between motor and shaft decreases. The frequency spectrum of the system is modulated by the first mode natural frequency, which is continuous multi-harmonics of the first mode natural frequency. The response of the system presents a quasi-periodic motion.

알루미나 세라믹스의 분위기 변화에 따른 Tribology 특성

  • 진동규;박흥식;전태옥;이광영
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.33-40
    • /
    • 1997
  • This study was undertaken to investigate tribology characteristics of the alumina ceramics($Al_2O_3$) for the vauiation of ambient condition such as air and distilled water. The results obtained were as follows. As the sliding speed increases, the friction coefficient in the air decreased due to the reduction of sheafing stress caused by the heat accumulation of contact interface. And the friction coefficient in the distilled water decreased due to an activation of the tribochemical reaction. As the contact load increases, the friction coefficient is small in the air due to temperature rise of the contact interface. However, at the low speed side in the distilled water, the friction coefficient holds a large value due to decrease of the tribochemical reaction. The friction surface of ceramics can be protected in the air by the influence of the oxides tansfered from STB2 and also in the distilled water by the influence of the corrosive productive hydroxides.

  • PDF

$Al_2O_3-TiC$의 마찰 및 마모특성에 관한 연구 (A Study on the Friction and Wear Characteristics of $Al_2O_3-TiC$)

  • 조구환;이기현;김경웅
    • Tribology and Lubricants
    • /
    • 제8권2호
    • /
    • pp.20-25
    • /
    • 1992
  • Friction and wear behavior of hot isostatic pressed $Al_2O_3-TiC$ was experimentally examined. Pin-on-disk type friction and wear apparatus was designed and manufactured for the experiment. The experiments were conducted under unlubricated sliding motion in both low and high humidity for three kinds of sliding speed. $Al_2O_3-TiC$ and bearing steel were used as counterface materials. Friction coefficient, wear rate, and surface roughness were measured. Wear surface and wear debris were observed through optical microscope and SEM and analyzed by EDAX. The results showed that the counterface materials, the sliding speed, and the moisture at the sliding surface have significant influence on the friction coefficient and wear rate of $Al_2O_3-TiC$.

개수로형 재생펌프의 특성해석에 관한 연구 (Performance Characteristic Analysis for Open Channel Type Regenerative Pump)

  • 신동윤;최창호;김진한
    • 한국유체기계학회 논문집
    • /
    • 제10권2호
    • /
    • pp.46-53
    • /
    • 2007
  • An improved performance characteristics analysis model of a regenerative pump is proposed in the present paper. For its low characteristic speed, a regenerative pump generates high head with low flow rate. However, the efficiency is fairly low due to the skin friction between impeller and casing. Also, the complexity of its internal flow pattern makes prediction of performance characteristics difficult. In the present research, a one-dimensional analysis model was improved with consideration of disc friction loss, minor loss, and modified flow length, and the result was proven to be close in range with the results from experiments.

디젤엔진용 핀부시 베어링 소재의 마찰특성에 관한 실험적 연구 (Experimental Study on the Friction Characteristics of Pin-Bush Bearing Metals for Diesel Engine)

  • 김청균;김경섭
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.409-413
    • /
    • 2009
  • This paper presents the hardness and friction characteristics of pb-free pin-bush bearing metal, which is manufactured by a centrifugal casting technology. A bronze metal with a high hardness and low friction properties is usually used for Diesel engine pin-bush bearing and high pressure cylinder. Pb-free metal for pin-bush bearings shows a little high hardness of 120 Hv compared with that of a conventional Pb bearing metal of 100~110 Hv. In general, the friction coefficient of pin-bush bearings is affected by a rotating speed and a load for various rubbing contact modes. But a contact load is more influential parameter when the contact rubbing mode transits from a mixed lubrication to a dry friction contact. The experimental result shows that the friction coefficient is more unstable at the dry contact mode compared with that of other two rubbing modes such as oil film contact and mixed friction conditions.

직교배열법에 의한 AZ31 마그네슘 합금의 마찰교반접합 특성 (Friction Stir Welding Characteristics of AZ31 Mg Alloy by Orthogonal Array)

  • 강대민;박경도;강정윤
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.16-21
    • /
    • 2012
  • Magnesium alloy has been focussed as lightweight material owing to its high strength even though low density with aluminum alloy, titanium alloy and plastic material. Friction stir welding technique was performed by rotating and plunging a shouldered tool with a small diameter pin into the joint line between two butted plates and useful to join magnesium alloy. In this paper, the experiments of friction stir welding were done to investigate the joint characteristics of AZ31 magnesium alloy. For its evaluation, the orthogonal array method$(L_{27}(3^{13}))$ was applied with four factors of pin diameter, shoulder diameter, travel speed and rotation speed of tool and also three levels of each factor. Nine tools were worked through shoulder diameter of 9, 12, 15mm and pin root diameter of 3, 4, 5mm. In addition tensile tests were excuted for the assessment of mechanical properties for joint conditions. From the results, pin diameter, shoulder diameter, and rotating speed of tool influenced on the tensile strength meaningful, but welding speed did not influence on that by the variance analysis. Beside of that, optimum condition of tensile strength was estimated as following ; shoulder diameter:15mm, welding speed:200mm/min, rotating speed:200rpm.

브로칭 가공된 회주철 소재 표면의 마찰 및 마모 특성 (Friction and Wear Characteristics of Gray Cast Iron Surface Processed by Broaching Method)

  • 권문성;강경희;김대은
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.262-269
    • /
    • 2018
  • In this work the friction and wear characteristics of the gray cast iron surface processed by broaching method, which is widely used in the machinery industry, were investigated. The broaching process is mainly used for mass production because it has high dimensional accuracy and processing speed, but the defects on surface can be easily generated. In order to improve the tribological characteristics, the approach was to reduce the roughness and hardness of the surface by adding a machining process to the broaching specimen. The secondary machining process using abrasive grains produces low roughness and hardness than broaching because it has high tool accuracy and removes the work hardened surface. The friction coefficient and the wear rate were assessed using a reciprocating-type tribotester to analyze the effects of surface finishing on the tribological properties. The friction tests were conducted under dry and lubricated conditions. The test results showed that the reduction of surface roughness and hardness through secondary machining process in lubricated condition improved the friction and wear characteristics. The reason why the same results did not appear in a dry condition was that wear occurred more rapidly than in lubricated condition. Thus, the positive effect of roughness and hardness of the surface obtained through the secondary machining process was not observed.

볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성 (Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports)

  • 서정화;김태호
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.