• 제목/요약/키워드: Low-Speed Friction Characteristics

검색결과 92건 처리시간 0.018초

Friction Characteristics of Non-Asbestos Organic (NAO) and Low-Steel Friction Materials: The Comparative Study

  • Kim, Seoun Jin;Jang, Ho
    • KSTLE International Journal
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2000
  • Eviction characteristics of two typical friction materials (non-asbestos organic and low-steel friction materials) for an automotive brake system were investigated using an inertial brake dynamometer. In particular, the effect of sliding speed on friction coefficient was carefully investigated employing various test modes. The two friction materials were developed for commercial applications and were different mainly in the type and the amount of metallic ingredients in the friction material. The dynamometer test showed that the low-steel friction material was sensitive to the sliding speed exhibiting a negative $\mu$-v relation. On the other hand, the non-asbestos organic friction material was less sensitive to the sliding speed. The low steel friction materials with a negative $\mu$-v relation also induced larger vibration amplitude during brake applications.

  • PDF

Friction Characteristics of piston Skirt Parametric Investigation

  • Cho, Myung-Rae;Kim, Jee-Woon;Moon, Tae-Sun;Han, Dong-Chul
    • KSTLE International Journal
    • /
    • 제3권1호
    • /
    • pp.1-6
    • /
    • 2002
  • The purpose of this paper is to investigate the effects of design parameters on the friction loss in piston skirt. An analytical model to describe the friction characteristics of piston skirt has been presented, which is based on the secondary motion of piston and mixed lubrication theory, It could be shown that the skirt friction closely depends on the side force acted on the piston pin. The side force is inf1uenced by cylinder pressure at low engine speed, but by inertia force at high engine speed. The usage of extensive skirt area and low weight piston is effective to reduce the friction loss at high speed. The low viscosity oil considerably decreases viscous friction as engine speed increases, but it increases boundary friction at low engine speed. From the parametric study, it is found that the skirt axial profile is the most important design parameter related to the reduction of skirt friction.

사축식 유압 피스톤 펌프의 저속 마찰 특성 개선 (Improvement of the Low-speed Friction Characteristics of a Bent-Axis Type Hydraulic Piston Pump)

  • 홍예선;이상율;김치붕;김성훈;임현식;김성대
    • 유공압시스템학회논문집
    • /
    • 제1권3호
    • /
    • pp.7-13
    • /
    • 2004
  • The hydraulic pump for a Electro-hydrostatic Actuator for aircrafts should be able to quickly feed large volume of oil into hydraulic cylinder in order to reduce the response time. On the other hand, it should be also able to precisely dispense small amount of oil by low-speed operation so that the steady state position control error of the EHA can be accurately compensated. This paper is focused on the investigation how the plasma coating surface treatment of cylinder barrel with CrSiN can contribute to the reduction of low-speed friction torque of a bent-axis type piston pump. The results showed that the reduction of the friction torque was not remarkable, but that the anti-wear characteristics of the CrSiN-coated cylinder barrel were much better that those of the original one.

  • PDF

Improvement of the Low-Speed Friction Characteristics of a Hydraulic Piston Pump by PVD-Coating of TiN

  • Hong Yeh-Sun;Lee Sang-Yul;Kim Sung-Hun;Lim Hyun-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.358-365
    • /
    • 2006
  • The hydraulic pump of an Electro-hydrostatic Actuator should be able to quickly feed large volume of oil into hydraulic cylinder in order to reduce the response time. On the other hand, it should be also able to precisely dispense small amount of oil through low-speed operation so that the steady state position control error of the actuator can be accurately compensated. Within the scope of axial piston type hydraulic pumps, this paper is focused on the investigation how the surface treatment of their cylinder barrel with TiN plasma coating can contribute to the reduction of the friction and wear rate of valve plate in the low-speed range with mixed lubrication. The results showed that the friction torque of the valve plate mated with a TiN coated cylinder barrel could be reduced to 22% of that with an uncoated original one when load pressure was 300 bar and rotational speed 100 rpm. It means that the torque efficiency of the test pump was expected to increase more than 1.3% under the same working condition. At the same time, the wear rate of the valve plate could be reduced to $40\sim50%$.

휠 굴삭기용 변속기의 클러치 마찰특성 분석 (Analysis of the Friction Characteristics of Transmission Clutch of a Wheel Excavator)

  • 이용범;김광민
    • Tribology and Lubricants
    • /
    • 제29권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Hydraulic transmission is the main component delivering power to the drive wheels of an excavator during forward and backward movement, and it has low speed, high torque and high speed, low torque gear change ratios as a forward/backward two-speed main function. It also has additional function of ensuring that the excavator is stably fixed on the ground with the built-in parking brake during excavation operations. In this study, optimal design specifications are determined by modeling and simulating about the multi-disc-type friction clutch, which is the main component improving the reliability of the hydraulic transmission for a 14-ton wheel excavator, and the friction properties of the transmission clutch are analyzed by performing sample tests.

박판성형 마찰특성의 실험적 연구 (Experimental Study on Frictional Characteristics of Sheet Metal Forming)

  • 금영탁;이봉현;차지혜
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.54-57
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction tests of various sheets were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extreme1y low or high, the friction coefficient is high. As punch comer radius and punch speed are bigger, the value of friction coefficient is smaller. The sensitivity of friction coefficient is mainly governed by lubricant viscosity and sheet surface roughness.

  • PDF

박판성형 해석용 마찰모델 (1부 : 실험) (Friction Model for Sheet Metal Forming Analysis (Part1 : Experiment))

  • 이봉현;금영탁
    • 소성∙가공
    • /
    • 제11권4호
    • /
    • pp.349-354
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction test of various sheet were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is relatively high. The result also show that as the punch radius and punch speed becomes bigger, the friction coefficient is smaller. Using experimental results, the mathematical expression between friction coefficient and lubricant viscosity, surface roughness, punch comer radius, or punch speed is also described.

카본 나노튜브 및 알루미나 첨가제가 윤활 및 마모특성에 미치는 영향에 대한 연구 (Study on Influence of Carbon Nanotubes and Alumina Additives to Lubrication and Wear Characteristics)

  • 윤창석;오대산;김현준
    • Tribology and Lubricants
    • /
    • 제33권5호
    • /
    • pp.220-227
    • /
    • 2017
  • In this work, carbon nanotube and nano-size alumina particle are exploited as additive for lubrication experiment. We used pin-on-disk type tribometer to investigate the tribological characteristics of lubricants with respect to additives and rotational speed. We conducted more than 15 trials of tribotests for two hours for each specimen to obtain stable and accurate frictional force and to create measurable wear track on the substrate. We conducted tests at the boundary/mixed lubrication regime to evaluate the influence of additives on the tribological characteristics. We found that the friction coefficient decreased as the rotational speed increased and as additives were added. In particular, the reduction of friction by adding additives was more significant at low rotational speed than at high rotational speed. We speculate that the additives helped to separate and protect the two contacting surfaces at low speed, while the influence of additives was not significant at high speed since sufficiently thick lubricant film was formed. The wear of the substrate was also reduced by adding additives to the lubricant. However, in contrast to friction, the amount of wear at high rotational speed was less when alumina particles were added to the lubricant than the amount of wear at low speed. We speculate that the increased wear at low rotational speed is as a result of the intermittent abrasive wear caused by alumina particles with uneven shape, while the reduced wear at high speed is as a result of sufficient film thickness which prevented the abrasive wear.

철도차량용 금속계 소결마찰재의 조성에 따른 트라이볼로지 특성 (Effects of Composition of Metallic Friction Materials on Tribological Characteristics on Sintered Metallic Brake Pads and Low-Alloy Heat-Resistance Steel for Trains)

  • 양용준;이희성
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.330-336
    • /
    • 2014
  • Sintered metallic brake pads and low alloy heat resistance steel disks are applied to mechanical brake systems in high energy moving machines that are associated with recently developed 200km/h trains. This has led to the speed-up of conventional urban rapid transit. In this study, we use a lab-scale dynamometer to investigate the effects of the composition of friction materials on the tribological characteristics of sintered metallic brake pads and low alloy heat resistance steel under dry sliding conditions. We conduct test under a continuous pressure of 5.5 MPa at various speeds. To determine the optimal composition of friction materials for 200 km/h train, we test and the evaluate frictional characteristics such as friction coefficients, friction stability, wear rate, and the temperature of friction material, which depend on the relative composition of the Cu-Sn and Fe components. The results clearly demonstrate that the average friction coefficient is lower for all speed conditions, when a large quantity of iron power is added. The specimen of 25 wt% iron powder that was added decreased the wear of the friction materials and the roughness of the disc surface. However when 35 wt% iron powder was added, the disc roughness and the wear rate of friction materials increased By increasing the amount of iron powder, the surface roughness, and temperature of the friction materials increased, so the average friction coefficients decreased. An oxidation layer of $Fe_2O_3$ was formed on both friction surfaces.

도시철도 고속화에 대비한 금속계 소결마찰재에서의 흑연 형상 및 비율에 따른 마찰특성 연구 (Study on Dependence of Friction Characteristics of Sintered Brake Friction Materials on Graphite Shape and Ratio with regard to Speeding up Rapid Transit System)

  • 김영규;이희성
    • Tribology and Lubricants
    • /
    • 제29권4호
    • /
    • pp.242-247
    • /
    • 2013
  • This study aims to establish the fundamental basis for the design of materials used in high-speed trains, by using a lab-scale dynamometer to evaluate the characteristic behavior of metallic sintered friction materials in relation to the shape of graphite. The test results clearly demonstrate that when flake graphite and granular graphite are added equivalently, the average coefficient of friction is much lower, and it is less influenced by speed variation; moreover, friction wear is observed to be insignificantly low. Adding flake graphite increases the coefficient of friction, which leads to higher friction wear. In addition, the roughness of the disc surface was equivalent regardless of the shape of the graphite.