• 제목/요약/키워드: Low-Shrinkage

검색결과 494건 처리시간 0.023초

양생 조건에 따른 콘크리트의 체적 변화 (Volumetric Change of Concrete Subjected to Different Curing Condition)

  • 이광명;이회근;이성진;백빈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.132-135
    • /
    • 2004
  • High-performance concrete (HPC) may be expected to differ from usual concrete with respect to shrinkage behavior, and it shows high autogenous shrinkage due to the use of very low water-binder ratio (w/b) and various admixtures. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structure, volumetric change of HPC should be understood. In this study, small prisms made of HPC with w/b of 0.32 and blast-furnace slag content of $0\%,\;30\%,\;and\;50\%$ were prepared to measure the volumetric changes such as autogenous shrinkage, drying shrinkage, and swelling under three different curing conditions. It was observed that the concrete cured. sealed condition showed only autogenous shrinkage while the concrete let to dry condition at temperature of $20^{\circ}C$ and relative humidity of $60\%$ during the test period showed both autogenous and drying shrinkage. Moreover, the concrete exposed to dry condition after 2-day water curing swelled and then started to shrink with age. The total shrinkage (autogenous+drying) of this concrete was smaller than that of the concrete cured dry condition, especially at early-age. Therefore, the early-age moisture curing is very effective to control or minimize the volumetric change and its induced stress of HPC.

  • PDF

Shrinkage Model Selection for Portfolio Optimization on Vietnam Stock Market

  • NGUYEN, Nhat;NGUYEN, Trung;TRAN, Tuan;MAI, An
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권9호
    • /
    • pp.135-145
    • /
    • 2020
  • This paper provides the practical application of a linear shrinkage framework on Vietnam stock market. The cumulative data points observed in this analysis are 468 weeks from January 2011 to December 2019. All the companies listed on Ho Chi Minh City Stock Exchange (HOSE), except the companies under two years period from Initial Public Offering (IPO), are considered. The cumulative number of stocks picked is therefore 350 companies. The VNINDEX, which is the Vietnam Stock Index, is used as a reference index for shrinking to a single-index model. The empirical results show that the shrinkage of covariance matrix for portfolio optimization gives the promising results for the investors on Vietnam stock market. The shrinkage method helps the investors to produce the optimal portfolio in the sense of having higher profit with lower levels of risk compared to the portfolio of the traditional SCM method. Moreover, the portfolio turnover of shrinkage method is always kept at low magnitudes, and this makes the shrinkage portfolios save much transaction costs and reduce the liquidity risks in the trading process. In addition, the ability of shrinkage method in making profit is once again confirmed by the Alpha coefficient that achieves a high positive value.

고흡수성수지와 팽창재 동시 혼입 시 고강도 모르타르의 수축거동에 미치는 영향 (Effect of Combined Superabsorbent Polymers and Expansion Agent on Shrinkage Behavior of High Strength Mortar)

  • 김민수;홍성걸
    • 대한건축학회논문집:구조계
    • /
    • 제35권12호
    • /
    • pp.157-164
    • /
    • 2019
  • Superabsorbent polymers(SAPs) are powdery material that absorb water several tens or hundreds of times its own mass. It has been reported that when SAPs are incorporated into a high strength cementitious material, the autogenous shrinkage of the material is reduced. Cross-linked sodium polyacrylate type SAPs are relatively safe for human body and low in production cost. In order to apply this type of SAPs to the admixture for total(plastic+autogenous+drying) shrinkage reduction of high strength mortar, the shrinkage behavior of mortar when an expansion agent(EA) and SAPs were mixed together was analyzed. As a result, it was found that the shrinkage was reduced when an EA 5% (mass % of cement) and SAPs 0.4% were mixed together than the mortar containing only an EA 10%. The shrinkage was further reduced when EA 10% and SAPs 0.4% were incorporated into mortar.

Experimental study on creep and shrinkage of high-performance ultra lightweight cement composite of 60MPa

  • Chia, Kok-Seng;Liu, Xuemei;Liew, Jat-Yuen Richard;Zhang, Min-Hong
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.635-652
    • /
    • 2014
  • Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 $kg/m^3$ and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (${\geq}$ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.

고강도 콘크리트의 건조수축 (Drying Shrinkage of High-Strength Concrete)

  • 임준영;정승호;이회근;이광명
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.437-442
    • /
    • 2002
  • Drying shrinkage is the decrease in the volume of a concrete element when it loses moisture by evaporating. Because of low water/binder ratio(W/B) and the use of chemical and mineral admixtures for high-strength concrete, the evolutions of moisture and the rate of cement hydration in high- strength concrete are significantly different from those in normal strength concrete. In this study, the drying shrinkage of high-strength concrete with and without fly ash was measured up to the age of 200 days. From the experimental test results, it was observed that the drying shrinkage decreased as the W/B decreased. As the W/B is lowered from 0.50 to 0.27, the difference of drying shrinkage between the fly ash concrete and the ordinary concrete is gradually increased.

  • PDF

Fabrication of Porous Yttria-Stabilized Zirconias Controlled by Additives

  • Paek, Yeong-Kyeun;Oh, Kyung-Sik;Lee, Hyuk-Jae
    • 한국세라믹학회지
    • /
    • 제44권2호
    • /
    • pp.79-83
    • /
    • 2007
  • To fabricate a thick, porous yttria-stabilized zirconia without cracking and warping, a method for the simultaneous control of the porosity and shrinkage was designed. As a pore former, a potato starch was used. For the control of shrinkage the oxidation of Al metal particles was used. For the sintering of the above powder mixtures, a partial sintering technique was used at $1300^{\circ}C$ for 10 min in air. Upon adding the additives, high open porosity above 53% and a low shrinkage level were obtained. As a result cracking and warping of the sintered body were deterred. This outcome most likely resulted from the compensation of sintering shrinkage due to the volume expansion caused by oxidation of the Al metal particles during heat-treatment.

Long-term flexural cracking of reinforced concrete members

  • Al-Zaid, Rajeh Z.
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.15-27
    • /
    • 2004
  • A rational and simple analytical model to predict the time varying cracking moment of reinforced concrete sections under sustained loading is developed. The modeling procedure is based on equilibrium and compatibility requirements and takes into account the interdependent effects of creep and shrinkage as well as the presence of axial loading. A parametric study is conducted in which particular consideration is given to the effects of reinforcement ratio, level of loading, and creep and shrinkage characteristics of concrete. It is concluded that the reduction in cracking moment is mainly attributed to shrinkage. The effect of shrinkage is more pronounced at low levels of sustained loading and at high reinforcement ratios. This effect is lessened by the compression steel and creep particularly when the applied moment is near the cracking moment.

CSA계 팽창재 및 수축 저감제의 혼입에 따른 UHPCC의 초기 수축 거동 평가 (Evaluating Early Age Shrinkage Behavior of Ultra High Performance Cementitious Composites (UHPCC) with CSA Expansive Admixture and Shrinkage Reducing Agent)

  • 류두열;박정준;김성욱;윤영수
    • 콘크리트학회논문집
    • /
    • 제23권4호
    • /
    • pp.441-448
    • /
    • 2011
  • 이 연구에서는 실리카퓸 및 수축 저감제, 팽창재, 고성능 감수제의 혼입을 변수로 한 초고성능 시멘트 복합체(UHPCC)의 초기 수축 거동을 평가하기 위하여 화학수축 및 자기수축 실험을 수행하고, 응결 측정 결과와 비교하여 UHPCC의 자기건조 시작 시점에 대하여 분석하였다. 실험 결과, 실리카퓸 및 수축 저감제는 초기 화학수축을 증가시키는 경향을 보였으며, 고성능 감수제는 시멘트와 배합수의 수화 반응을 지연시키고 화학수축을 저감시키는 것으로 나타났다. 수축 저감제와 팽창재를 조합하여 적용한 경우 약 49%의 자기수축 저감 효과를 보였으며, 팽창재는 경화를 촉진 시키는 것으로 나타났다. 또한 UHPCC는 다수의 섬유 혼입과 낮은 물-결합재비에 의해 초결 이전부터 자기건조 현상이 발생하는 것으로 나타났다.

라텍스개질 콘크리트의 물-시멘트비에 따른 건조수축 특성 (Drying Shrinkage Properties of Latex Modified Concrete with Water-Cement Ratios)

  • 정원경;김성환;김동호;이주형;이봉학
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.193-200
    • /
    • 2002
  • Drying shrinkage cracking which may be caused by the relatively large specific surface IS a matter of grave concern for latex modified concrete(LMC) overlay and rapid-setting cement latex modified concrete(RSLMC) overlay. LMC and RSLMC were studied for field applications very actively in terms of strength and durability in Korea. However, there were no considerations in drying shrinkage. Therefore, the purpose of this dissertation was to study the drying shrinkage properties of LMC and RSLMC with the main experimental variables such as cement types(ordinary portland cement, rapid setting cement), water-cement ratios and curing days at a same controlled environment of 60% of relative humidity and $20^{\circ}C$ of temperature The drying shrinkage for specimens was measured with a digital dial gauge of Demec. The test results showed that the drying shrinkage of LMC and RSLMC were considerably lower with low water-cement ratio, respectively This might be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic, and colloidal properties of the latexes resulting in reduced water evaporation.

  • PDF

Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber-reinforced concrete slabs

  • Yoo, Doo-Yeol;Kwon, Ki-Yeon;Yang, Jun-Mo;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.711-719
    • /
    • 2017
  • This study investigates the effects of reinforcing bar diameter and cover depth on the shrinkage behavior of restrained ultra-high-performance fiber-reinforced concrete (UHPFRC) slabs. For this, twelve large-sized UHPFRC slabs with three different rebar diameters ($d_b=9.5$, 15.9, and 22.2 mm) and four different cover depths (h=5, 10, 20, and 30 mm) were fabricated. In addition, a large-sized UHPFRC slab without steel rebar was fabricated for evaluating degree of restraint. Test results revealed that the uses of steel rebar with a large diameter, leading to a larger reinforcement ratio, and a low cover depth are unfavorable regarding the restrained shrinkage performance of UHPFRC slabs, since a larger rebar diameter and a lower cover depth result in a higher degree of restraint. The shrinkage strain near the exposed surface was high because of water evaporation. However, below a depth of 18 mm, the shrinkage strain was seldom influenced by the cover depth; this was because of the very dense microstructure of UHPFRC. Finally, owing to their superior tensile strength, all UHPFRC slabs with steel rebars tested in this study showed no shrinkage cracks until 30 days.