• Title/Summary/Keyword: Low-Rise Reinforced Concrete Buildings

Search Result 82, Processing Time 0.024 seconds

Seismic assessment and retrofitting of existing structure based on nonlinear static analysis

  • Ni, Pengpeng
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.631-644
    • /
    • 2014
  • Seismic assessment and retrofitting of existing structure is a complicated work that typically requires more sophisticated analyses than performing a new design. Before the implementation of a Code for seismic design of buildings (GBJ 11-89), not enough attention has been paid on seismic performance of structures and a great part of the existing reinforced concrete structures built in China have been poorly designed according to the new version of the same code (GB 50011-2010). This paper presents a case study of seismic assessment of a non-seismically designed reinforced concrete building in China. The structural responses are evaluated using the nonlinear static procedure (the so-called pushover analysis), which requires its introduction within a process that allows the estimation of the demand, against which the capacity is then compared with. The capacity of all structural members can be determined following the design code. Based on the structural performance, suitable retrofitting strategies are selected and implemented to the existing system. The retrofitted structure is analyzed again to check the effectiveness of the rehabilitation. Different types of retrofitting strategy are discussed and classified according to their complexity and benefits. Finally, a proper intervention methodology is utilized to upgrade this typical low-rise non-ductile building.

Seismic performance of low-rise reinforced concrete moment frames under carbonation corrosion

  • Vaezi, Hossein;Karimi, Amir;Shayanfar, Mohsenali;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.215-224
    • /
    • 2021
  • The carbon dioxide present in the atmosphere is one of the main reasons for the corrosion of bridges, buildings, tunnels, and other reinforced concrete (RC) structures in most industrialized countries. With the growing use of fossil fuels in the world since the Industrial Revolution, the amount of carbon dioxide in urban and industrial areas of the world has grown significantly, which increases the chance of corrosion caused by carbonation. The process of corrosion leads to a change in mechanical properties of rebars and concrete, and consequently, detrimentally impacting load-bearing capacity and seismic behavior of RC structures. Neglecting this phenomenon can trigger misleading results in the form of underestimating the seismic performance metrics. Therefore, studying the carbonation corrosion influence on the seismic behavior of RC structures in urban and industrial areas is of great significance. In this study, a 2D modern RC moment frame is developed to study and assess the effect of carbonation corrosion, in 5-year intervals, for a 50 years lifetime under two different environmental conditions. This is achieved using the nonlinear static and incremental dynamic analysis (IDA) to evaluate the reinforcement corrosion effects. The reduction in the seismic capacity and performance of the reinforced concrete frame, as well as the collapse probability over the lifetime for different corrosion scenarios, is examined through the capacity curves obtained from nonlinear static analysis and the fragility curves obtained from IDA.

Analytical Study of the Effect of Full and Partial Masonry Infills on the Seismic Performance of School Buildings (조적채움벽 및 허리벽이 학교 건물 내진 성능에 미치는 영향에 대한 해석적 연구)

  • Kim, Tae Wan;Min, Chan Gi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.197-207
    • /
    • 2013
  • The seismic performance of school buildings has been a matter of common interest socially and academically. The structural system of the school buildings is representative of the domestic low-rise reinforced concrete moment resisting frames, which apply extensively infills in their masonry walls. The masonry infilled walls are divided into full masonry infill in the transverse direction and partial masonry infill in the longitudinal direction. The masonry infilled walls are usually not included in structural analysis during the design process, but affect significantly the seismic performance because they behave with surrounding frames simultaneously during earthquakes. Many researchers have studied the effect of the masonry infilled walls, but several issues have been missed such as the increase of asymmetry by adding the full masonry infill, the size of the mean strength of the full masonry infill, and short column effect by the partial masonry infill. The issues were analytically investigated and the results showed that they should be checked at least by nonlinear pushover analysis in the seismic performance evaluation process. The results also confirm the weakness of the guideline of Korean Educational Development Institute where the seismic performance is basically assessed without structural analysis.

Estimation of earthquake induced story hysteretic energy of multi-Story buildings

  • Wang, Feng;Zhang, Ning;Huang, Zhiyu
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.165-178
    • /
    • 2016
  • The goal of energy-based seismic design is to obtain a structural design with a higher energy dissipation capacity than the energy dissipation demands incurred under earthquake motions. Accurate estimation of the story hysteretic energy demand of a multi-story structure is the key to meeting this goal. Based on the assumption of a mode-equivalent single-degree-of-freedom system, the energy equilibrium relationship of a multi-story structure under seismic action is transformed into that of a multi-mode analysis of several single degree-of-freedom systems. A simplified equation for the estimation of the story seismic hysteretic energy demand was then derived according to the story shear force and deformation of multi-story buildings, and the deformation and energy relationships between the mode-equivalent single-degree-of-freedom system and the original structure. Sites were categorized into three types based on soil hardness, namely, hard soil, intermediate hard (soft) soil, and soft soil. For each site type, a 5-story and 10-story reinforced concrete frame structure were designed and employed as calculation examples. Fifty-six earthquake acceleration records were used as horizontal excitations to validate the accuracy of the proposed method. The results verify the following. (1) The distribution of seismic hysteretic energy along the stories demonstrate a degree of regularity. (2) For the low rise buildings, use of only the first mode shape provides reasonably accurate results, whereas, for the medium or high rise buildings, several mode shapes should be included and superposed to achieve high precision. (3) The estimated hysteretic energy distribution of bottom stories tends to be underestimated, which should be modified in actual applications.

Vibration Characteristics of a Building Before and After Damage by Actual Measurement (실측을 통한 건물의 손상 전.후 진동특성 평가)

  • Yoon, Sung-Won;Park, Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.445-453
    • /
    • 2010
  • Recently, the remodeling projects of old low-rise buildings were launched in Korea. However, most of them were not satisfied with the value set forth by the KBC2005. Even though there are some research studies on how to improve the seismic performance of such buildings as newly constructed buildings, there is little research in measuring the actual vibrations on low old buildings to prove the effect of retrofit. There also has not been any in-depth research on the dynamic characteristics of full-scale structures using vibration measurements of the building that was damaged to failure. Using an actuator, the dynamic characteristics of reinforced three-storey concrete buildings were evaluated before and after they were damaged. After an 80-mm horizontal displacement by the actuator, frequency in the long and short directions were reduced to 20.85% and 5.77% respectively ; damping ratio was also reduced to 53.9% and 23.15% respectively.

A Development of Seismic Rehabilitation Method of RC Buildings Strengthened with X-Bracing Using Carbon Fiber Composite Cable (X-가새형 탄소섬유케이블을 이용한 중·저층 철근콘크리트 건물의 내진보강법 개발)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. In this study, a non-compression cross-bracing system using the Carbon Fiber Composite Cable (CFCC), which consists of CFCC bracing and bolt connection was proposed to replace the conventional steel bracing. This paper presented the seismic resistance of a reinforced concrete frame strengthened using CFCC X-bracing. Cyclic loading tests were carried out, and the maximum load carrying capacity and ductility were investigated, together with hysteresis of the lateral load-drift relations. Test results revealed that the CFCC X-bracing system installed RC frames enhanced markedly the strength capacity and no buckling failure of the bracing was observed.

Analysis on the Flexural Behavior of Existing Reinforced Concrete Beam-Column Structures Infilled with U-Type Precast Wall Panel (U형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 보-기둥 구조물의 휨 거동 분석)

  • Son, Guk-Won;Yu, Sung-Young;Lim, Cheol-Woo;Ju, Ho-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.56-66
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Seismic resistant test of anchored and welded steel plate connections manifested an average of 2.8 times increase in the maximum loading (average 591.8 kN) in comparison to unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.4% and 2.7%. An analytical study was performed while assuming the RC column on the right side and the vertical element of the reinforced PC panel to behave in completely composite manner and the RC column on the left side and PC panel to behave in completely non-composite manner when loading was exerted from upper right end of RC frame of specimen to its left side. It was found with the assumptions that the overall flexural behavior in principle agreed with the experimental result.

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

A Seismic Capacity of R/C Building Damaged by the 2016 Gyeongju Earthquake Based on the Non-linear Dynamic Analysis (비선형동적해석에 의한 2016년 경주지진에서 지진피해를 받은 R/C 건물의 내진성능에 관한 연구)

  • Jung, Ju-Seong;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.137-146
    • /
    • 2018
  • On September 12, 2016, the Gyeongju District was strongly shaken with M=5.8, which was the largest one since measured by the actual seismometer in Korea, and some buildings were damaged. The field survey of reinforced concrete school buildings in the affected area was carried out, and their residual seismic capacities(R) were estimated based on the Japanese Standard for post-earthquake damage evaluation. In this study, the M school, which was greatly damaged by the 2016 Gyeongju Earthquake, was selected, and its damage level was evaluated on the basis of the Japanese Standard. The seismic capacity of the M school was also evaluated using the nonlinear dynamic analysis, and relationships between its damage level and seismic capacity was also conducted to investigate causes of earthquake damage. The damage level of M school was classified into light with R=88.2%. The result of the dynamic analysis agreed reasonably well with the damage of M school sustained by the 2016 Gyeongju earthquake. This will provide fundamental data for earthquake preparedness measures, such as the seismic rehabilitation of low-rise reinforced concrete buildings in Korea.

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.