• Title/Summary/Keyword: Low-NOx regime

Search Result 5, Processing Time 0.022 seconds

Atmospheric Photochemistry in Low-and High-NOx Regimes

  • Kim, Do-Yong;Soda, Satoshi;Kendo, Akira;Oh, Jai-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Atmospheric photochemistry of $O_3-NOx-RH$ were considered theoretically, to clarify the reasons for the different trends of between the formation of photochemical oxidants (Ox) and its primary pollutants for the Low-and High-NOx regimes. Equations of OH, $HO_2$, and production of ozone ($O_3$) as a function of nitrogen oxides (NOx) and reactive hydrocarbons (RH) were represented in this study. For the Low-NOx regime, $HO_2$ radical is proportional to RH but independent of NOx. OH radical is proportional to NOx but inversely-proportional to RH. $O_3$ production is proportional to NOx but has a weak dependence on RH. For the High-NOx regime, OH and $HO_2$ radicals concentrations and $O_3$ production are proportional to RH but inversely-proportional to NOx. In addition, the Osaka Bay and surrounding areas of Japan were evaluated with the mass balance of odd-hydrogen radicals (Odd-H) using CBM-IV photochemical mechanism, in order to distinguish the Low- and High-NOx regimes. The Harima area (emission ratio, RH/NOx = 6.1) was classified to the Low-NOx regime. The Hanshin area (RH/NOx = 3.5) and Osaka area (RH/NOx = 4.3) were classified to the High-NOx regime.

Comparisons of Low Temperature Combustion Characteristics between Diesel and Biodiesel According to EGR control (EGR 제어를 통한 디젤 및 바이오디젤의 저온연소 특성 비교)

  • Lee, Yong-Gyu;Jang, Jae-Hoon;Lee, Sun-Youp;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • Due to the oxygen contents in biodiesel, application of the fuel to compression ignition engines has significant advantages in terms of lowering PM formation in the combustion chamber. In recent days, considerable studies have been performed to extend the low temperature combustion regime in diesel engines by applying biodiesel fuel. In this work, low temperature combustion characteristics of biodiesel blends in dilution controlled regime were investigated at a fixed engine operating condition in a single cylinder diesel engine, and the comparisons of engine performances and emission characteristics between biodiesel and conventional diesel fuel were carried out. Results show that low temperature combustion can be achieved at $O_2$ concentration of around 7~8% for both biodiesel and diesel fuels. Especially, by use of biodiesel, noticeable reduction (maximum 50% of smoke was observed at low and middle loads compared to conventional diesel fuel. In addition, THC(total hydrocarbon) and CO(Carbon monoxide) emissions decreased by substantial amounts for biodiesel fuel. Results also indicate that even though about 10% loss of engine power as well as 14% increase of fuel consumption rate was observed due to lower LHV(lower heating value) of biodiesel, thermal efficiencies for biodiesel fuel were slightly elevated because of power recovery phenomenon.

Drying Characteristics of 25 kW Class Industrial Dryer Adopting Mat Type Premixed Catalytic Burner (매트 형태의 예혼합 촉매 버너를 활용한 25 kW급 건조기의 성능 특성)

  • Ahn, Joon;Kim, Hyouck-Ju;Song, Kwang-Sup;Choi, Kyu-Sung;Song, Dae-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2856-2861
    • /
    • 2008
  • A catalytic burner has been developed to utilize thermal energy from the fossil fuel without nitrogen oxides (NOx) emission. The burner is shaped into a mat to maximize the heating surface. Premixed combustion has been developed to be used in a closed chamber, such as a radiation type industrial dryer. The burner yields the thermal energy in the form of thermal radiation in the infrared regime, which is proved to be effective to dry organic substances for low moisture condition. Thermal efficiency including the sensible heat is better correlated to the moisture compared to the dry rate.

  • PDF

The investigation on the Ignition Delay of n-heptane/n-butanol Blend Fuel Using a Rapid Compression Machine at Low Temperature Combustion Regime (저온연소조건에서 급속압축기를 이용한 n-heptane/n-butanol 혼합연료의 착화지연에 관한 연구)

  • Song, Jae Hyeok;Kang, Ki Joong;Yang, Zheng;Lu, XingCai;Choi, Gyung Min;Kim, Duck Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.32-41
    • /
    • 2013
  • This study presents both experimental and numerical investigation of ignition delay time of n-heptane and n-butanol binary fuel. The $O_2$ concentration in the mixture was set to 9-10% to make high exhaust gas recirculation( EGR) rate condition which leads low NOx and soot emission. Experiments were performed using a rapid compression machine(RCM) at compressed pressure 20bar, several compressed temperature and three equivalence ratios(0.4, 1.0, 1.5). In addition, a numerical study on the ignition delay time was performed using CHEMKIN codes to validate experimental results and predict chemical species in the combustion process. The results showed that the ignition delay time increased with increasing the n-butanol fraction due to a decrease of oxidation of n-heptane at the low temperature. Moreover, all of the binary fuel mixtures showed the combustion characteristics of n-heptane such as cool flame mode at low temperature and negative-temperature-coefficient(NTC) behavior. Due to the effect of high EGR rate condition, the operating region is reduced at lean condition and the ignition delay time sharply increased compared with no EGR condition.

Numerical study of a conical MILD combustor with varing the fuel flow rate (연료유량 변화에 따른 원추형 MILD 연소로의 수치적 해석)

  • Kim, Tae Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3370-3375
    • /
    • 2014
  • MILD combustion is a highly favored technology for solving the trade-off relation between high thermal efficiency and low pollutant emissions. The system has low NOx concentration in high temperature combustion by recirculating the combustion gas, as well as improving the thermal efficiency by making the internal temperature in a combustion furnace uniform. This study describes the combustion characteristics of a conical MILD combustor in a laboratory-scale furnace by adjusting the equivalence ratio with the fuel gas flow rate while maintaining a constant air flow rate of the furnace. The MILD regime in the furnace is well characterized and the in-furnace temperature and emissions were predicted, respectively, for the range of equivalence of 0.69 - 0.83. For the range of equivalence ratios, this study confirmed the existence of a stable flame region that has an approximately $300^{\circ}C$ temperature difference between the maximum flame temperature region and main reaction region.