• Title/Summary/Keyword: Low-Hydrogen

Search Result 1,691, Processing Time 0.025 seconds

Optimization of Reaction Conditions for the High Purity Hydrogen Production Process Using By-Product Gases in Steel Works (철강산업 부생가스를 이용한 고순도 수소 제조 공정의 반응 조건 최적화)

  • CHOI, HANSEUL;KIM, JOONWOO;KIM, WOOHYOUNG;KIM, SUNGJOONG;KOH, DONGJUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.621-627
    • /
    • 2016
  • Low-priced hydrogen is required in petrochemical industry for producing low-sulfur oil, and upgrading low-grade crude oil since environmental regulations have been reinforced. Steel industry can produce hydrogen from by-product gases such as Blast Furnace Gas (BFG), Coke Oven Gas (COG), and Linze Donawitz Gas (LDG) with water gas shift (WGS) reaction by catalysis. In this study, we optimized conditions for WGS reaction with commercial catalysts by BFG and LDG. In particular, the influence on activity of gas-hourly-space-velocity, and $H_2O/CO$ ratios at different temperatures were investigated. As a result, 99.9%, and 97% CO conversion were showed with BFG, and LDG respectively under $350^{\circ}C$ High Temperature Shift (HTS), $200^{\circ}C$ Low Temperature Shift (LTS), 3.0 of $H_2O/CO$, and $1500h^{-1}$ of GHSV. Furthermore, 99.9% CO conversion lasted for 250 hours with BFG as feed gas.

Adsorption of Atomic Hydrogen on ZnO Single Crystal Surfaces: A Study on the Impact of Surface Structure

  • Roy, Probir Chandra;Motin, Abdul;Kim, Chang-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.216-216
    • /
    • 2012
  • The interaction of hydrogen with ZnO single crystal surfaces, ZnO (0001), ZnO (000-1), and ZnO (10-10) has been investigated using temperature programmed desorption (TPD) and X-ray photoelectron Spectroscopy (XPS) techniques. When the ZnO single crystal surfaces are exposed to atomic hydrogen at 200 K, all three surfaces show hydrogen desorption at 450 K. ZnO (0001) surface shows hydrogen desorption feature at ~260 K as the hydrogen exposure is increased. The ZnO (10-10) surface shows low-temperature desorption feature first and the high-temperature desorption feature appears as the hydrogen exposure increases. The ZnO (000-1) surface does not show any lower temperature hydrogen desorption. We will report the adsorption configuration of hydrogen atoms on ZnO single crystal surfaces with different surfaces structures.

  • PDF

The Preparation Characteristics of Hydrogen Permselective Membrane in IS Process of Nuclear Hydrogen Production (원자력 수소제조 IS 공정의 수소분리막 제조 특성)

  • Son, Hyo-Seok;Choe, Ho-Sang;Kim, Jeong-Min;Hwang, Gap-Jin;Park, Ju-Sik;Bae, Gi-Gwang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.119-123
    • /
    • 2005
  • The thermochemical splitting of water has been proposed as a clean method for hydrogen production. The IS process is one of the thermochemical water splitting processes using iodine and sulfur as reaction agents. HI decomposition procedure to obtain hydrogen is one of the key operations in the process, because equilibrium conversion of HI is low (22% at $450^{\circ}C$). The silica membranes prepared by CVD. method were applied to the decomposition reaction of HI vapor. The permeation characteristics of hydrogen and nitrogen belong to the Knudsen flow pattern.

  • PDF

Phase Separation Characteristics of Low Temperature Bunsen Reactions In Sulfur-Iodine Hydrogen Production Process (황-요오드 수소 제조 공정에서 저온 분젠 반응의 상 분리 특성)

  • Han, Sang-Jin;Lee, Kwang-Jin;Kim, Hyo-Sub;Kim, Young-Ho;Park, Chu-Sik;Bae, Ki-Kwang;Lee, Jong-Gyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.424-431
    • /
    • 2011
  • The Sulfur-Iodine(SI) thermochemical hydrogen production process consists of three sections, which are so called the Bunsen reaction section, the $H_2SO_4$ decomposition section and the HI decomposition section. In order to identify the phase separation characteristics in the reaction conditions with the high solubility of $SO_2$, we conducted the Bunsen reaction at the low temperatures, ranging from 283 to 298K, with the $I_2/H_2O$ molar ratios of 2.5/16.0 and 3.5/16.0. The molar ratios of HI/$H_2SO_4$ products obtained from low temperature Bunsen reactions were ca. 2, indicating that there were no side reactions. The amount of reacted $SO_2$ was increased with decreasing the temperature, while the amounts of unreacted $I_2$ and $H_2O$ were decreased. In the phase separation of the products, the amount of a $H_2SO_4$ impurity in $HI_x$ phase was increased with decreasing the temperature, though the temperature has little affected on HI and $I_2$ impurities in $H_2SO_4$ phase.

Evaluation of Hydrogenation Behavior of MgHx-Graphene Composites by Mechanical Alloying (기계적 합금화법으로 제조한 MgHx-Graphene 복합재료의 수소화 거동 특성)

  • Lee, Soo-Sun;Lee, Na-Ri;Kim, Kyeong-Il;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.780-786
    • /
    • 2011
  • Mg hydride had high hydrogen capacity (7.6%), lightweight and low cost materials and it was promising hydrogen storage material at high temperature. However, commercial applications of the Mg hydride are currently hindered by its high absorption/desorption temperature, and very slow reaction kinetics. one of the approaches to improve the kinetic is $MgH_x$ intermixed with carbon. And it shows that carbon and carbon allotropes have a beneficial effect on hydrogen sorption in Mg. The graphene is a kind of carbon allotropes which is easily desorbed reaction at low temperatures because its reaction is exothermic. In this work, the effect of graphene concentration on the kinetics of Mg hydrogen absorption reaction was investigated. The $MgH_x$-Graphene composites has been prepared by hydrogen induced mechanical alloy (HIMA). The synthesized powder was characterized by XRD and simultaneous TG, DSC analysis. The hydrogenation behaviors were evaluated by using a sievert's type automatic PCT apparatus. In this research, results of kinetic profiles exhibit hydrogen absorption rate of $MgH_x$-5wt.% and 10wt.% graphene composite, as 1.25wt.%/ms, 10.33wt.%/ms against 0.88wt.%/ms for $MgH_x$ alone at 473K.

Hydrogen Diffusion in APX X65 Grade Linepipe Steels

  • Park, Gyu Tae;Koh, Seong Ung;Kim, Kyoo Young;Jung, Hwan Gyo
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.117-122
    • /
    • 2006
  • Hydrogen permeation measurements have been carried out on API X65 grade linepipe steel. In order to study the effect of steel microstructure on hydrogen diffusion behavior in linepipe steel, the accelerated cooling condition was applied and then three different kinds of microstructures were obtained. Hydrogen permeation measurement has been performed in reference to modified ISO17081 (2004) and ZIS Z3113 method. Hydrogen trapping parameters in these steels were evaluated in terms of the effective diffusivity ($D_{eff}$), permeability ($J_{ss}L$) and the amount of diffusible hydrogen. In this study, microstructures which affect both hydrogen trapping and diffusion were degenerated pearlite (DP), acicular ferrite (AF), bainite and martensite/austenite constituents (MA). The low $D_{eff}$ and $J_{ss}L$ mean that more hydrogen can be trapped reversibly or irreversibly and the corresponding steel microstructure is dominant hydrogen trapping site. The large amount of diffusible hydrogen means that corresponding steel microstructure is predominantly reversible. The results of this study suggest that the hydrogen trapping efficiency increases in the order of DP, bainite and AF, while AF is the most efficient reversible trap.

Flexible Hydrogen Sensor Using Ni-Zr Alloy Thin Film

  • Yun, Deok-Whan;Park, Sung Bum;Park, Yong-il
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.297-303
    • /
    • 2019
  • A triple-layered $PMMA/Ni_{64}Zr_{36}/PDMS$ hydrogen gas sensor using hydrogen permeable alloy and flexible polymer layers is fabricated through spin coating and DC-magnetron sputtering. PDMS(polydimethylsiloxane) is used as a flexible substrate and PMMA(polymethylmethacrylate) thin film is deposited onto the $Ni_{64}Zr_{36}$ alloy layer to give a high hydrogen-selectivity to the sensor. The measured hydrogen sensing ability and response time of the fabricated sensor at high hydrogen concentration of 99.9 % show a 20 % change in electrical resistance, which is superior to conventional Pd-based hydrogen sensors, which are difficult to use in high hydrogen concentration environments. At a hydrogen concentration of 5 %, the resistance of electricity is about 1.4 %, which is an electrical resistance similar to that of the $Pd_{77}Ag_{23}$ sensor. Despite using low cost $Ni_{64}Zr_{36}$ alloy as the main sensing element, performance similar to that of existing Pd sensors is obtained in a highly concentrated hydrogen atmosphere. By improving the sensitivity of the hydrogen detection through optimization including of the thickness of each layer and the composition of Ni-Zr alloy thin film, the proposed Ni-Zr-based hydrogen sensor can replace Pd-based hydrogen sensors.

Effects of Pretreatment Time and pH low set value on Continuous Mesophilic Hydrogen Fermentation of Food Waste (열처리 시간과 pH 하한값이 음식물쓰레기 연속 중온 수소 발효에 미치는 영향)

  • Kim, Sang-Hyoun;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2011
  • Since 2005, food waste has been separately collected and recycled to animal feed or aerobic compost in South Korea. However, the conventional recycling methods discharge process wastewater, which contain pollutant equivalent to more than 50% of food waste. Therefore, anaerobic digestion is considered as an alternative recycling method of food waste to reduce pollutant and recover renewable energy. Recent studies showed that hydrogen can be produced at acidogenic stage in two-stage anaerobic digestion. In this study, the authors investigated the effects of pretreatment time and pH low set value on continuous mesophilic hydrogen fermentation of food waste. Food waste was successfully converted to $H_2$ when heat-treated at $70^{\circ}C$ for 60 min, which was milder than previous studies using pH 12 for 1 day or $90^{\circ}C$. Organic acid production dropped operational pH below 5.0 and caused a metabolic shift from $H_2/butyrate$ fermentation to lactate fermentation. Therefore, alkaline addition for operational pH at or over 5.0 was necessary. At pH 5.3, the result showed that the maximum hydrogen productivity and yield of 1.32 $m^3/m^3$.d and 0.71 mol/mol $carbohydrate_{added}$. Hydrogen production from food waste would be an effective technology for resource recovery as well as waste treatment.

Electrospun Polyacrylonitrile-Based Carbon Nanofibers and Their Hydrogen Storages

  • Kim Dong-Kyu;Park Sun Ho;Kim Byung Chul;Chin Byung Doo;Jo Seong Mu;Kim Dong Young
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.521-528
    • /
    • 2005
  • Electrospun polyacrylonitrile (PAN) nanofibers were carbonized with or without iron (III) acetylacetonate to induce catalytic graphitization within the range of 900-1,500$^{circ}C$, resulting in ultrafine carbon fibers with a diameter of about 90-300 nm. Their structural properties and morphologies were investigated. The carbon nanofibers (CNF) prepared without a catalyst showed amorphous structures and very low surface areas of 22-31 $m^{2}$/g. The carbonization in the presence of the catalyst produced graphite nanofibers (GNF). The hydrogen storage capacities of these CNF and GNF materials were evaluated through the gravimetric method using magnetic suspension balance (MSB) at room temperature and 100 bar. The CNFs showed hydrogen storage capacities which increased in the range of 0.16-0.50 wt$\%$ with increasing carbonization temperature. The hydrogen storage capacities of the GNFs with low surface areas of 60-253 $m^{2}$/g were 0.14-1.01 wt$\%$. Micropore and mesopore, as calculated using the nitrogen gas adsorption-desorption isotherms, were not the effective pore for hydrogen storage.

Patent Trend for Hydrogen Production Technology by Steam Reforming of Natural Gas (천연가스의 수증기 개질에 의한 수소 제조 기술 특허동향)

  • Seo, Dong-Ju;Yoon, Wang-Lai;Kang, Kyung-Seok;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.464-480
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photochemical method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studied for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by steam reforming of natural gas were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2006. Patents were gathered by using key-words searching and extracted by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.