• Title/Summary/Keyword: Low-GWP

Search Result 32, Processing Time 0.026 seconds

Advanced Dry Etch Process with Low Global Warming Potential Gases Toward Carbon Neutrality (반도체 탄소 중립을 위한 친환경 가스 기반 식각 공정 연구)

  • Jeonga Ju;Jinkoo Park;Joonki Suh;Hongsik Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.99-108
    • /
    • 2023
  • Currently, semiconductor manufacturing industry heavily relies on a wide range of high global warming potential (GWP) gases, particularly during etching and cleaning processes, and their use and relevant carbon emissions are subject to global rules and regulations for achieving carbon neutrality by 2050. To replace high GWP gases in near future, dry etching using alternative low GWP gases is thus being under intense investigations. In this review, we report a current status and recent progress of the relevant research activities on dry etching processes using a low GWP gas. First, we review the concept of GWP itself and then introduce the difference between high and low GWP gases. Although most of the studies have concentrated on potentially replaceable additive gases such as C4F8, an ultimate solution with a lower GWP for main etching gases including CF4 should be developed; therefore, we provide our own perspective in this regard. Finally, we summarize the advanced dry etch process research with low GWP gases and list up several issues to be considered in future research.

Low GWP 냉매의 열물성 및 안정성

  • Kim, Man-Hoe
    • Journal of the KSME
    • /
    • v.57 no.9
    • /
    • pp.35-39
    • /
    • 2017
  • 이 글에서는 Low GWP 냉매의 열물성과 냉매-오일의 상용성, 화학적 안정성 및 재질 적합성에 대해 소개하고자 한다.

  • PDF

The Performance Analysis of Sea Water Heat Pump applied Low GWP Refrigerants (Low GWP 냉매를 적용한 해수열 히트펌프의 성능해석)

  • Lim, Seung-Taek;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.92-97
    • /
    • 2016
  • In this study, the seawater Heat Pump System using seawater with temperature of annual domestic conditions ($0^{\circ}C$ to $25^{\circ}C$) is designed in order to compare its performance against the Heat Pump using unused heat of seawater. As a potential replacement for current refrigerants that exacerbate global warming and ozone delpetion, a Low GWP refrigerant's performance is analyzed. The basic water to water Heat Pump system is chosen and three commercial refrigerants - R134a, R410a, R32 - are used to compare against new Low GWP refrigerant R1234ze. When seawater with temperature of $25^{\circ}C$ is used, the performance change showed maximal increase in COP, 38.3%. low GWP refrigerant R1234ze, showed great performance characteristics reach to 5.242 and Existing commercial refrigerant, R134a showed only less than 0.03 performance difference against R1234ze. The study confirms notable performance of R1234ze refrigerant through simulation as environmentally friendly refrigerant for domestic seawater Heat Pump.

Low GWP 냉매의 국내외 연구개발 동향

  • Kim, Min-Su;Jo, Geum-Nam
    • Journal of the KSME
    • /
    • v.57 no.9
    • /
    • pp.30-34
    • /
    • 2017
  • 이 글에서는 Low GWP(Global Warming Potential, 지구온난화지수) 냉매의 국내외 연구개발 동향에 대해 소개하고자 한다.

  • PDF

Low GWP 냉매적용 셸-튜브형 응축기 개발

  • Jeon, Dong-Sun;Kim, Seon-Chang
    • Journal of the KSME
    • /
    • v.57 no.9
    • /
    • pp.45-48
    • /
    • 2017
  • 이 글에서는 지구온난화 방지 및 $CO_2$ 감축의 일환으로 수행되고 있는 Low GWP 냉매적용 셸-튜브형 응축기 개발과정에 대하여 소개하고자 한다.

  • PDF

Low GWP 냉매 적용 셸-튜브형 증발기 개발

  • Kim, Dong-Ho;Byeon, Ho-Won;Kim, Uk-Jung
    • Journal of the KSME
    • /
    • v.57 no.9
    • /
    • pp.40-44
    • /
    • 2017
  • 이 글에서는 Low GWP 냉매를 이용하는 셸-튜브형 증발기 개발 기술에 대해서 소개하고자 한다. 자세히는 터보냉동기에 사용되는 만액식 증발기에 대한 기술 소개 및 향후 개발 연구에 대해 소개한다.

  • PDF

Low GWP 냉매적용 판형 증발기/응축기 개발 동향

  • Kim, Yong-Chan;Gang, Yong-Tae
    • Journal of the KSME
    • /
    • v.57 no.9
    • /
    • pp.49-53
    • /
    • 2017
  • 이 글에서는 냉동 공조산업에서 쓰이는 냉매들의 변천사와 앞으로 다가올 미래 공조산업을 준비하기 위한 Low GWP 냉매를 적용한 판형 증발기 및 응축기에 관한 연구에 대하여 소개하고자 한다.

  • PDF

Performance Improvement on the Re-Liquefaction System of Ethylene Carrier using Low-Global Warming Potential Refrigerants (Low - Global Warming Potential 냉매를 이용한 에틸렌 수송선의 재액화 시스템 성능개선)

  • Ha, Seong-Yong;Choi, Jung-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.415-420
    • /
    • 2018
  • The development of sail gas has increased the production of ethane as well as natural gas. The decline in the market price for ethane has led to a change in the petroleum-based ethylene production process into an ethane-based ethylene production process and an increase in the ethane/ethylene trade volume. Large-scale ethane/ethylene carrier have been needed due to an increase in long-distance trade from the US, and cargo type change have leaded to consider a liquefaction process to re-liquefy Boil-Off gas generated during the voyage. In this paper, the liquefaction system of Liquefied Ethane Gas carrier was evaluated with Low-GWP (Low-Global Warming Potential) refrigerant and process parameters, Boil-Off Gas pressure and expansion valve outlet pressure, were optimized. Low-GWP refrigerants were propane (R290), propylene(R1270), carbon dioxide(R744) was considered at two type of liquefaction process such as Linde and cascade cycle. The results show that the optimal pressure point depends on the individual refrigerant and the highest liquefaction efficiency of carbon dioxide (R744) - propane (R290) refrigerant.

A Study on the Refrigerant Characteristics of the HFC-l52a, and Azeotrope Mixed with $CF_3 I$ (HFC-152a와 HFC-1523에 $CF_3 I$를 혼합한 공비혼합냉매 특성에 관한 연구)

  • 이종인;하옥남;김재열;이연신;권일욱
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.102-108
    • /
    • 2001
  • To prevent green house effect and destruction of an ozone layer, an ozone destruction potential(OBP) must be zero and a refrigerant for low global warming potential(GWP) is needed. HFC-l34a, in which hydrogen is mixed instead of chlorine is a refrigerant used for automobile conditioners and its destruction potential is ecologically zero. However, it is not consid- ered as a perfect substitutive refrigerant as its GWP is high. It is studied refrigerant mixtures in which HFC-l52a and $CF_3 I$ in HFC-l52a with low GWP and zero ODP are mixed by experimentally and concluded as follows: 1) With the variation of speed of compressor outside temperature and flow rate, 7he heat of evaporator and compressor and coefficient of perfor- mance was varied, and influenced the air conditioner. 2) The pressure of evaporator was decreased with increasing the speed of compressor and the pressure of evaporator with the refrigerant HFC-l52a was higher 24% than that of azotrope refrigerant mixed with $CF_3 I$

  • PDF

A Study on the Refrigerant Characteristics of the HFC-l52a, and Azeotrope Mixed with $CF_3$I in Air Conditioners (에어컨용 냉매 HFC-152a와 HFC-152a에 $CF_3$I를 혼합한 공비혼합냉매 특성에 관한 연구)

  • 이종인;하옥남;홍경한;권일욱;박찬수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.332-340
    • /
    • 2002
  • In these days, environmental concerns have been increased throughout the industry and community worldwide. To prevent the ozone depletion, ozone depletion potential of a refrigerant must be zero. Simultaneously, a refrigerant with low GWP (global warming potential) is very demanding to induce green house effect. Chlorine-free HFC-l34a is a refrigerant widely used for automotive air-conditioning system because its destruction potential is ecologically zero. Although HFC-l34a has no ozone depletion potential, its global warming potential is so high that it is not considered as a perfect alternative refrigerant that is acceptable for long-term use. In this paper, experimental measurement has been carried out to analyze the performance characteristics of automotive air-conditioning system using HFC-152a, which has low GWP and zero ODP. Also mixed refrigerant that is composed of HFC-152a and $CF_3$ was applied to investigate an alternative possibility for the automotive airconditioning system. As a result of this study, we could draw following conclusions; With respect to the variation of the rotational speed of compressor, outside air temperature and flow rate, the heat amount of evaporator and compressor and performance coefficient was varied.