• Title/Summary/Keyword: Low-Energy Surface

Search Result 1,579, Processing Time 0.029 seconds

Surface Treatment of Eggshells with Low-Energy Electron Beam

  • Kataoka, Noriaki;Kawahara, Daigo;Sekiguchi, Masayuki
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.8-13
    • /
    • 2021
  • Background: Salmonella enteritidis (SE) was the main cause of the pandemic of foodborne salmonellosis. The surface of eggs' shells can be contaminated with this bacterium; however, washing them with sodium hypochlorite solution not only reduces their flavor but also heavily impacts the environment. An alternative to this is surface sterilization using low-energy electron beam. It is known that irradiation with 1 kGy resulted in a significant 3.9 log reduction (reduction factor of 10,000) in detectable SE on the shell. FAO/IAEA/WHO indicates irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard. On the other hand, the Food and Drug Administration has deemed a dose of up to 3 kGy is allowable for eggs. However, the maximum dose permitted to be absorbed by an edible part (i.e., internal dose) is 0.1 Gy in Japan and 0.5 Gy in European Union. Materials and Methods: The electron beam (EB) depth dose distribution in the eggshell was calculated by the Monte Carlo method. The internal dose was also estimated by Monte Carlo simulation and experimentation. Results and Discussion: The EB depth dose distribution for the eggshells indicated that acceleration voltages between 80 and 200 kV were optimal for eggshell sterilization. It was also found that acceleration voltages between 80 and 150 kV were suitable for reducing the internal dose to ≤ 0.10 Gy. Conclusion: The optimum irradiative conditions for sterilizing only eggshells with an EB were between 80 and 150 kV.

Dynamic Boric Acid Corrosion of Low Alloy Steel for Reactor Pressure Vessel of PWR using Mockup Test (가압형 경수로 압력용기 재료인 저합금강의 동적 붕산 부식 실증 연구)

  • Kim, Sung-Woo;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • This work is concerned with an evaluation of dynamic boric acid corrosion (BAC) of low alloy steel for reactor pressure vessel of a pressurized water reactor (PWR). Mockup test method was newly established to investigate dynamic BAC of the low alloy steel under various conditions simulating a primary water leakage incident. The average corrosion rate was measured from the weight loss of the low alloy steel specimen, and the maximum corrosion rate was obtained by the surface profilometry after the mockup test. The corrosion rates increased with the rise of the leakage rate of the primary water containing boric acid, and the presence of oxygen dissolved in the primary water also accelerated the corrosion. From the specimen surface analysis, it was found that typical flow-accelerated corrosion and jet-impingement occurred under two-phase fluid of water droplet and steam environment. The maximum corrosion rate was determined as 5.97 mm/year at the leakage rate of 20 cc/min of the primary water with a saturated content of oxygen within the range of experimental condition of this work.

Surface Properties of Silane-Treated Titania Nanoparticles and Their Rheological Behavior in Silicone Oil

  • Hwang, Joon-Sik;Lee, Jeong-Woo;Chang, Yoon-Ho
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.409-417
    • /
    • 2005
  • The surface of rutile titania nanoparticles was chemically modified by reacting with alkoxy silane. The surface and rheological properties in silicone oil having a wide range of viscosity were investigated. Total surface free energy($\gamma_S$) of the titania particles decreased from 53.12 to 26.94 mJ/$m^2$ as the silane used for surface treatment was increased from 0 to 5.0 wt$\%$. The surface free energy of neat silane was 25.5 mJ/$m^2$, which is quite close to that oftitania particles treated with 5.0 wt$\%$ silane. Due to the hydrophobic nature oftreated-titania, the contact angle was accordingly higher for polar solvent in the order of water>ethylene glycol> formamide>$\alpha$-bromonaphthalene. In sum of rheological behavior, as the applied shear stress or viscosity of the silicone oil increased, the titania particles tend to form layers and agglomerated clusters, showing shear-thinning and shear-thickening behaviors, sequentially. A good dispersion of discrete titania particles obeying a Newtonian flow behavior was achieved at a surface energy or low concentration of silane-treated titania particles in hydrophobic silicone oil.

A Method of Self-Arranging Solderballs for Packaging by Using Surface Energy Difference and Soldering (표면에너지 차이를 이용한 패키징용 솔더볼 자가정렬 및 솔더링 방법)

  • Hong, Jang-Won;Chang, Jong-Hyeon;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1531_1532
    • /
    • 2009
  • This paper presents a method of self-arranging solderballs by using surface energy difference. After evaporating Au which has high surface energy on Si substrates, Teflon passivation layer which has low surface energy was patterned by lift-off process. Droplets formed only on the hydrophilic Au solderball lands by the surface energy difference, not the hydrophobic Teflon surface. Scattered solderballs sticked by themselves to the wetted solderball lands on the tilted substrate. After setting preheating of $200^{\circ}C$ and soldering of $245^{\circ}C$ hot plates, the solderballs were soldered on the solderball lands and two substrates were soldered together completely. After measuring the mechanical shear strength of the soldered substrates with solderballs of $3{\times}3$, $4{\times}4$ and $5{\times}5$ arrays. the calculated shear strength per one solderball was 1.1~2.4kgf as high as the previous report.

  • PDF

Effect of Ozone Treatment on Dyeability of Polyethylene Film (오존 처리가 폴리에틸렌 필름의 염색성에 미치는 영향)

  • 박수진;신준식;김학용;이덕래
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.98-105
    • /
    • 2003
  • The surface energy and the effect of functional groups on the surface of the ozone-treated low-density polyethylene (LDPE) film were studied. Treatment conditions were treatment time, total amount of transferred ozone, and ozone concentration. The introduction of polar groups on the surface of LDPE film after ozone treatment was confirmed by FTIR-ATR and XPS analyses. Surface fee energy of the LDPE film was examined by a contact angle method. The ozone treated-LDPE film showed a decreased water contact angles about 15$^{\circ}$ mainly due to the increased concentration of oxygen-containing functional groups, which was attributed to the increased surface free energy or $O_{IS}/C_{IS}$Also, the concentrations of the oxygen-containing functional groups on the surface of LDPE film increased with ozone treatment time and concentration, whereas no significant effects were found for the total amount of transferred ozone. From the dyeability test using Kubelka-Munk equation, it was found that the ozone treatment plays an important role in the growth of oxygen-containing functional groups of LDPE film, resulting in the improvement of dyeability for basic dyeing agent.

A Study on Characterization for Low Temperature SCR Reaction by $Mn/TiO_2$ Catalysts with Using a Various Commercial $TiO_2$ Support (다양한 상용 $TiO_2$ 담체를 이용한 $Mn/TiO_2$ 촉매의 저온 SCR 반응 특성 연구)

  • Kwon, Dong Wook;Choi, Hyun Jin;Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.190-194
    • /
    • 2012
  • 10 wt% Mn supported on various commercial $TiO_2$ catalysts were prepared by wet-impregnation method for the low temperature selective catalytic reduction (SCR) of NO with $NH_3$. A combination of various physico-chemical techniques such as BET, XRD, XPS and TPR were used to characterize these catalysts. MnOx surface densities on MnOx/$TiO_2$ catalyst were related to surface area. As MnOx surface density lowered with high dispersion, the SCR activity for low temperature was increased and the reduction temperature ($MnO_2$ ${\rightarrow}$ $Mn_2O_3$) of surface MnOx was lower. For a high SCR, MnOx could be supported on a high surface area of $TiO_2$ and should be existed a high dispersion of non-crystalline species.

A Study on Operational Concept of Solar Powered HALE UAV Using Directed-Energy (지향성 에너지를 이용한 고고도 장기체공 태양광 무인항공기 운용 개념 연구)

  • Ahn, Hyo-Jung
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.59-66
    • /
    • 2011
  • Recently, an UAV using green energy for propulsion has been developed due to exhaustion of fossil fuel. This aircraft runs on electric motors rather than internal combustion engines, with electricity coming from fuel cells, solar cells, ultracapacitors, and/or batteries. Especially solar cells are installed in HALE UAV and flight tests are performed in the stratosphere. Although the solar powered UAV has the advantage of zero emission, its energy conversion efficiency is low and operation time is limited. Therefore, the solar powered UAV has been designed to operate with the secondary battery obtaining flexibility of energy management. In this study, we suggest the new operational concept of the solar powered UAV using directed-energy rayed from the surface of earth to UAV. An UAV is able to secure additional power through attaching solar cell to the lower surface of elevator. As a result, the additional energy supplied by directed-energy can improve the energy management and operational flexibility of the solar powered UAV.

Surface modification and induced ultra high surface hardness by nitrogen ion implantation of low alloy steel

  • Olofinjana, A.O.;Bell, J.M.;Chen, Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.157-158
    • /
    • 2002
  • A surface hardenable low alloy carbon steel was implanted with medium energy (20 - 50KeV) $N_2^+$ ions to produced a modified hardened surface. The implantation conditions were varied and are given in several doses. The surface hardness of treated and untreated steels were measured using depth sensing ultra micro indentation system (UMIS). It is shown that the hardness of nitrogen ion implanted steels varied from 20 to 50GPa depending on the implantation conditions and the doses of implantation. The structure of the modified surfaces was examined by X-ray photoelectron spectroscopy (XPS). It was found that the high hardness on the implanted surfaces was as a result of formation of non-equilibrium nitrides. High-resolution XPS studies indicated that the nitride formers were essentially C and Si from the alloy steel. The result suggests that the ion implantation provided the conditions for a preferential formation of C and Si nitrides. The combination of evidences from nano-indentation and XPS, provided a strong evidence for the existence of $sp^3$ type of bonding in a suspected $(C,Si)_xN_y$ stoichiometry. The formation of ultra hard surface from relatively cheap low alloy steel has significant implication for wear resistance implanted low alloy steels.

  • PDF

Thermal and Chemical Quenching Phenomena in a Microscale Combustor (I) -Fabrication of SiOx(≤2) Plates Using ion Implantation and Their Structural, Compositional Analysis- (마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (I) -이온 주입법을 이용한 SiOx(≤2) 플레이트 제작과 구조 화학적 분석-)

  • Kim Kyu-Tae;Lee Dae-Hoon;Kwon Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.397-404
    • /
    • 2006
  • Effects of surface defect distribution on flame instability during flame-surface interaction are experimentally investigated. To examine chemical quenching phenomenon which is caused by radical adsorption and recombination processes on the surface, thermally grown silicon oxide plates with well-defined defect density were prepared. ion implantation technique was used to control the number of defects, i.e. oxygen vacancies. In an attempt to preferentially remove oxygen atoms from silicon dioxide surface, argon ions with low energy level from 3keV to 5keV were irradiated at the incident angle of $60^{\circ}$. Compositional and structural modification of $SiO_2$ induced by low-energy $Ar^+$ ion irradiation has been characterized by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). It has been found that as the ion energy is increased, the number of structural defect is also increased and non-stoichiometric condition of $SiO_x({\le}2)$ is enhanced.

Sur face Modification of Ultra High Molecular Weight Polyethylene Films by UV/ozone Ir radiation

  • Yun, Deuk-Won;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.76-82
    • /
    • 2011
  • Ultra High molecular weight polyethylene(UHMWPE) films were photooxidized by UV/ozone irradiation. Reflectance of the irradiated films decreased in the low wavelength regions of visible light, indicating destructive interference of visible light due to roughened surface. The UV treatment developed the nano-scale roughness on the UHMWPE films surface, which increased by two-fold from 82.6 to 156.6nm in terms of peak-valley roughness. The UV irradiation caused the oxygen content of the UHMWPE film surface to increase. Water contact angle decreased from $83.2^{\circ}$ to $72.9^{\circ}$ and surface energy increased from 37.8 to 42.6mJ/$m^2$ with increasing UV energy. The surface energy change was attributed to significant contribution of polar component rather than nonpolar component indicating surface photooxidation of UHMWPE films. The increased dyeability to cationic dyes may be due to the photochemically introduced anionic and dipolar dyeing sites on the film surfaces.