• Title/Summary/Keyword: Low-Carbon Green Campus

Search Result 6, Processing Time 0.017 seconds

A Comparative Analysis of Domestic and Foreign Universities' Facility Management for Green Campus - Focusing on the Energy Management - (그린캠퍼스를 위한 국내.외 대학시설관리(FM) 비교분석 - 에너지관리 중심 -)

  • Shin, Eun-Young;Kim, Jun-Ha
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.19 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • Recently, as the environment issue has been stand out, people's interests in energy consumption of the building have been increased as well. Especially, university has been classified as the one of the main causes of excessive energy consumption. Therefore, domestic and foreign universities are trying to build a green campus in an attempt for sustainable development. Since early 2000s, foreign universities have been aware that one of the main causes of global warming is an excessive consumption of energy in universities. Accordingly, they adopted various energy management programs for the conservation. Ultimately, enforcing energy conservation and using alternative energy resulted in lower expense and it was a great help for the universities. On the other hand, excessive consumption of energy in domestic universities has been considered as serious, which led them to become the second main energy consumers in 2010. However, it seems people do not truly recognize the impotance of energy management, therefore, relatively little attention has been paid to this matter. Based on Leadership in Energy & Environmental Design(LEED) rating systems for on-campus building operation and maintenance, this research suggests the evaluation standard to effectively analyze the energy management activity with the best practices conducted in foreign universities and to solve the problem of campus facilities management in domestic universities. The result shows that domestic universities do not have a designated task force for effective energy management and the lack of energy professionals hinders for the long term development. Therefore, domestic universities should recognize the seriousness of the excessive energy consumption and develop low carbon green campus through proactive management practices since this is very essential for domestic universities to get more competitive in this global era.

A Study on Analyzing Eco-efficiency of Carbon Labeled Building Materials - Focused on Floor Finishes - (탄소성적표시 건축 재료의 환경 효율성 분석 연구 - 바닥 마감재를 중심으로 -)

  • Choi, Ji-Hye;Lee, Yoon-Sun;Kim, Jae-Jun
    • Journal of the Korean housing association
    • /
    • v.25 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • In recent years, Korean government has focused on improving the environmental impact of products in order to reduce greenhouse gas emissions and to achieve their energy goals. The government has been conducting the following polices such as green procurement inducement and certification system. After carbon labeling was conducted in 2009, among a total of 1,065 items, 97 building materials have been given a certification: finishing materials items have the highest weight (56%). The increase in the certification numbers shows that there has been considerable technical efforts in the building material industry. At the awareness of carbon label and purchase of low carbon product, however, customers are aware of carbon labeling but the purchasing rate of carbon product is low. In this paper, we suggest that low carbon activities must also be considered in order to create client value by adding the concept of ecological efficiency. The objective of this study to measurer the eco-efficiency of carbon labeled building materials on the basis of environmental aspects of the product with the perspective of economy for purchasing the excellent products.

Methods to Reduce Greenhouse Gas for University Buildings to Make a Low-Carbon Green Campus - With Case Study on the 'E' University -

  • Song, Su Min;Peom, Sung Woo;Park, Hyo Soon;Song, Kyoo Dong
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.37-46
    • /
    • 2014
  • University buildings are energy-guzzling facility that consume more than 10,000TOE within a campus annually. Even the consumption is on an upswing trend. Behind such high consumption are there cheap power rates for education facility, lack of high-efficiency equipment and ever-increasing use of various information equipment. Being keenly aware that greenhouse gas emission increases due to such rise of energy consumption, the present study carried out a case study. In the case study, the study chose the buildings of E university from top 10 universities that consume energy most in Seoul and examined the current status of their energy consumption and greenhouse gas emission. And then it set the reduction target of greenhouse gas by year. Putting aside a middle and long-termed strategy for later endeavor, it first established the 1st year's implementation plan (2014) for energy saving and greenhouse gas reduction with limited budget and according to greenhouse gas reduction target. The plan is specified as follows. Targets for energy saving are mainly divided into two sectors: machine equipment and electric equipment. 7 ideas were proposed. Three ideas to improve machine equipment are to replace with high-efficiency boilers and chillers and to adjust the position of the cooling tower. By doing so, it was estimated that energy could be saved by 176.34TOE in total and greenhouse gas could be reduced by 370.771t$CO_2$-eq. Four ideas to improve electric equipment include the replacement with LED lights, LED emergency lights and high-efficiency motors and the installation of motion sensors. It was calculated that such replacement could conserve 1,076.08TOE (electric energy) and reduce 2,181.420t$CO_2$-eq (greenhouse gas).

Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials

  • N. K. Karthikeyan;S. Elavenil
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.53-69
    • /
    • 2024
  • Advancements in the technology of building materials has led to diverse applications of nanomaterials with the aim to monitor concrete structures. While there are myriad instances of the use of nanoparticles in building materials, the production of smart nano cement-composites is often expensive. Thereupon, this research aims to discover a sustainable nanomaterial from tyre waste using the pyrolysis process as part of the green manufacturing circle. Here, Nano Structure Tyre-Char (NSTC) is introduced as a zero-dimension carbon-based nanoparticle. The NSTC particles were characterized using various standard characterization techniques. Several salient results for the NSTC particles were obtained using microscopic and spectroscopic techniques. The size of the particles as well as that of the agglomerates were reduced significantly using the milling process and the results were validated through a scanning electron microscope. The crystallite size and crystallinity were found to be ~35nm and 10.42%, respectively. The direct bandgap value of 5.93eV and good optical conductivity at 786 nm were obtained from the ultra violet visible spectroscopy measurements. The thermal analysis reveals the presence of a substantial amount of carbon, the rate of maximum weight loss, and the two stages of phase transformation. The FT-Raman confirms the presence of carboxyl groups and a ID/IG ratio of 0.83. Water contact angle around 140° on the surface implies the highly hydrophobic nature of the material and its low surface energy. This characteristic process assists to obtain a sustainable nanomaterial from waste tyres, contributing to the development of a smart building material.

Sustainable Development of Palm Oil: Synthesis and Electrochemical Performance of Corrosion Inhibitors

  • Porcayo-Calderon, J.;Rivera-Munoz, E.M.;Peza-Ledesma, C.;Casales-Diaz, M.;de la Escalera, L.M. Martinez;Canto, J.;Martinez-Gomez, L.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.133-145
    • /
    • 2017
  • Palm oil production is among the highest worldwide, and it has been mainly used in the food industry and other commodities. Currently, a lot of palm oil production has been destined for the synthesis of biodiesel; however, its use in applications other than the food industry has been questioned. Thereby for a sustainable development, in this paper the use of palm oil of low quality for corrosion inhibitors synthesis is proposed. The performance of the synthesized inhibitors was evaluated by using electrochemical techniques such as open circuit potential measurements, linear polarization resistance and electrochemical impedance spectroscopy. The results indicate that the fatty amides from palm oil are excellent corrosion inhibitors with protection efficiencies greater than 98%. Fatty amides molecules act as cathodic inhibitors decreasing the anodic dissolution of iron. When fatty amides are added, a rapid decrease in the corrosion rate occurs due to the rapid formation of a molecular film onto carbon steel surface. During the adsorption process of the inhibitor a self-organization of the hydrocarbon chains takes place forming a tightly packed hydrophobic film. These results demonstrate that the use of palm oil for the production of green inhibitors promises to be an excellent alternative for a sustainable use of the palm oil production.

Estimation of Greenhouse Gas Emissions (GHG) Inventory and Reduction Plans for Low Carbon Green Campus in Daegu University (저탄소 그린캠퍼스 조성을 위한 온실가스 인벤토리 구축 및 감축잠재량 분석 - 대구대학교를 중심으로)

  • Jeong, YeongJin;Li, KaiChao;Kim, TaeOh;Hwang, InJo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.506-513
    • /
    • 2014
  • The objective of this study is to establish the greenhouse gases (GHG) inventories and estimate the GHG reduction plans for Daegu University from 2009 to 2011. The annual average of GHG emissions in Daegu University was estimated to be 19,413 ton $CO_2$ eq during the study period. Emissions of electricity usage in Scope 2 most contributed about 55.4% of the total GHG emissions. Also, GHG emissions of Scope 2, Scope 1, and Scope 3 contributed 60.4%, 22.6%, and 17.0%, respectively. In order to estimate reduction potential of GHG, the Long-range Energy Alternatives Planning (LEAP) model was calculated using three scenarios such as sensor installation, LED replacement, and solar facility. The GHG will be reduced by 1,656 ton $CO_2$ eq for LED scenario, by 1,041 ton $CO_2$ eq for sensor scenario, and by 737 ton $CO_2$ eq for solar scenario compared to 2020 business as usual (BAU). Therefore, the total GHG emissions in 2020 apply three scenarios can be reduced by 15% compared with 2020 BAU.