• 제목/요약/키워드: Low viscosity fuel

검색결과 94건 처리시간 0.024초

파라핀/알루미늄 연료의 알루미늄 입자크기 및 함유비 변화에 따른 유변학적 특성 (Rheological Investigation of Aluminized Paraffin Wax Fuel on Particle Size and Contents)

  • 류성훈;한승주;문희장;김진곤;김준형;고승원
    • 한국추진공학회지
    • /
    • 제22권2호
    • /
    • pp.11-19
    • /
    • 2018
  • 본 연구에서는 하이브리드 로켓용 파라핀/알루미늄 연료의 유변학적 특성 파악을 위한 점도 측정을 수행하였다. 혼합된 알루미늄 입자의 크기와 첨가량에 따른 유변학적 특성을 파악하기 위해 평균 입도 100 nm, $8{\mu}m$의 나노 및 마이크로 크기 알루미늄 입자첨가 시료를 제작하였으며, 회전형 레오미터를 사용해 점도를 측정하였다. 나노 및 마이크로 입자 함유비에 따른 증가율 패턴은 대단히 상이하였으며 입자의 함유비 10 wt%를 경계로 점도 증가율이 구분되었고, 나노입자 첨가 시 연료의 유입 후퇴율 감소에 따른 총 후퇴율의 저하를 예상할 수 있었다.

커먼레일 분사시스템에서 바이오에탄올 및 디젤연료 혼합 바이오디젤의 분무 특성 (Spray Characteristics of Biodiesel Fuel by Blending Bioethanol and Diesel Fuel in a Common Rail Injection System)

  • 박수한;서현규;김형준;이창식
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.82-89
    • /
    • 2009
  • In order to investigate the spray characteristics according to diesel and bioethanol blending with biodiesel fuel, macroscopic spray characteristics were analyzed from the comparison of the effect of the injection pressure, ambient pressure and density on the spray tip penetration and spray cone angle. In addition, spray atomization characteristics were studied with local and overall Sauter mean diameter (SMD) and the contour map of SMD distribution at various injection conditions. It was revealed that the spray tip penetration of biodiesel fuels blended with diesel and ethanol was shorter than that of an undiluted biodiesel fuel at low injection pressure. However, the difference of spray tip penetration among three test fuels reduces at a high injection pressure. Increase of the ambient gas density leads to the decrease of the spray tip penetration of three test fuels. When diesel and ethanol fuels add to an undiluted biodiesel fuel, spray cone angle increases due to the decrease of the fuel density at the same ambient pressure condition. On the other hand, the droplet mean diameter decreases due to the reduction of the kinematic viscosity and surface tension.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF

연료 물성치 변화가 HCCI용 스월 인젝터의 분무특성에 미치는 영향 (An Effect of Fuel Property on the Spray characteristics of Swirl Injector for Use HCCI engine)

  • 정해영;이기형;이창식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.478-483
    • /
    • 2003
  • This paper describes spray characteristics of a swirl injector which is intended for use in a HCCI engine. Many optical diagnostics such as laser diffraction methods, and high speed camera photography are applied to measure the spray drop diameter and to investigate the spray development process. The effect of fuel properties on the spray characteristics was investigated using three different fuels because HCCI combustion is tolerant of the chemical composition of various fuels. From these results, the HCCI injector formed a hollow cone sheet spray rather than a liquid jet and the atomization efficiency is high for the low-pressure injector. The SMD of test injector was ranged from $15{\mu}m$ ${\mu}m$ We also found that the spray breakup characteristics were dependent on the fuel properties such as density, viscosity, and surface tension.

  • PDF

목질계 열분해유/부탄올 혼합연료를 사용한 디젤 발전기의 성능 및 배출가스 특성에 관한 연구 (Performance and Emission Characteristics of an IDI Diesel Generator Fueled with Wood Pyrolysis Oil/Butanol Blended Fuels)

  • 이석환;강건용;김민재;임종한
    • 한국자동차공학회논문집
    • /
    • 제25권3호
    • /
    • pp.380-388
    • /
    • 2017
  • Wood pyrolysis oil(WPO) has been regarded as an alternative fuel for diesel engines. However, WPO is not feasible for use directly in diesel engines due to its poor fuel quality such as low energy density, high acidity, high viscosity and low cetane number. The most widely used approach to improve WPO fuel quality is to blend WPO with other hydrocarbon fuels that have a higher cetane number. However, WPO and fossil fuels are not usually blended because of their different polarity. Also, clogging and polymerization problems in the fuel supply system can occur when the engine is operated with WPO. Polymerization can be prevented by diluting WPO with other alcohol fuels. However, WPO-alcohol blended fuel does not produce self-ignition. Therefore, additional cetane enhancement to the blended fuel is required to enhance auto-ignitability. In this study, WPO was blended with n-butanol and two cetane enhancements(PEG 400 and 2-EHN) for application to a diesel generator. Experimental results showed that the WPO-butanol blended fuel achieved a very stable engine operation under maximum WPO content of 20 wt%.

저유황유(VLSFO)의 유처리제 효용성 연구 (Effectiveness of Dispersants for Very-Low-Sulfur Fuel Oil)

  • 김득산;서정목;안수현;이희진
    • 해양환경안전학회지
    • /
    • 제27권1호
    • /
    • pp.113-118
    • /
    • 2021
  • The International Maritime Organization(IMO)는 2020년 1월 1일부터 국제항해 선박에 사용되는 모든 연료의 황분을 0.5 % 이하로 제한하고 있다. 연료유 황 함유량 규제 대응을 위해 LNG 선박, SOx scrubbers, 저유황유(Very Low-Sulfur Fuel Oil, VLSFO) 사용 등이 고려되고 있으며, 이 중 투자비용이 상대적으로 적은 저유황유가 선호되고 있다. 따라서 저유황유를 사용하는 선박이 증가함에 따라 오염사고 위험성이 높아질 것으로 예상된다. 특히, 해수 온도가 저유황유의 유동점 이하로 유출될 경우 고형화됨에 따라 방제에 어려움을 겪고 있는 사례도 나타나고 있다. 본 논문에서는 국내서 생산되는 저유황유 6종과 고유황유(MF380) 1종에 대해 해수 온도 조건에 따라 유처리제의 분산 능력을 평가하였다. 연구결과, 저유황유는 국내 기준(0.5 min 정치 60 % 이상, 10 min 정치 20 % 이상)을 만족하지 못했으며, 고유황유에 비해 상대적으로 낮은 유화율을 보였다. 본 연구결과는 저유황유가 해상에 유출될 경우, 방제방향을 설정하는 데 활용될 수 있을 것으로 기대된다.

해상용 경유의 희석량에 따른 선박용 윤활유의 유변학적 거동연구 (Rheological behavior study of Marine Lubricating oil on the amount of MGO (Marine Gas Oil) dilution)

  • 송인철;이영호;여영화;안수현;김대일
    • 해양환경안전학회지
    • /
    • 제22권2호
    • /
    • pp.240-245
    • /
    • 2016
  • 본 연구에서는 해상용 경유의 희석량에 따른 선박용 윤활유의 점도 및 전단응력의 변화 등 유변학적 거동에 대한 연구를 하였다. 연료희석에 의한 윤활유의 점도감소는 피스톤링 및 라이너의 마모로 인한 엔진내구성을 저하키는 중요한 요소이다. 연구에 사용된 윤활유는 고유황 경유(황함유량 0.05 %)를 3 %, 6 %, 10 %, 15 %, 20 %로 희석하여 magnetic stirrer를 이용, 혼합하여 제조하였다. 측정온도는 $-10^{\circ}C{\sim}80^{\circ}C$ 범위로 설정하고, 점도 및 전단응력 변화는 회전점도계인 Brookfield Viscometer를 이용하여 측정하였다. 윤활유에 해상용 경유의 희석량이 증가할수록 점도 및 전단응력이 감소하며, 이것은 상대적으로 낮은 점도의 해상용 경유가 윤활유에 희석됨에 따라 윤활유의 점도 및 전단응력이 낮아지기 때문이다. 특히, 저온($0{\sim}-10^{\circ}C$)에서는 점도 및 전단응력이 급격이 낮아지다가, $40^{\circ}C$ 이상에서는 점도 및 전단응력 감소가 해상용 경유 희석량의 영향을 거의 받지 않는다. 온도가 높아짐에 따라, 윤활유의 점도 및 전단응력 감소는 윤활유의 뉴턴유체 거동을 보이는 것을 확인했다. 경유의 혼입에 의한 점도감소로 선박의 엔진마모를 촉진할 수 있으므로 엔진의 내구성 향상을 위해 윤활유의 주기적인 관리가 필요하다.

LPLi 시스템에서 외장형 펌프의 연료조성 및 온도에 따른 성능특성 연구 (Performance Characteristics with Various Fuel Composition and Temperature for an External Type Fuel Pump in LPLi System)

  • 남덕우;윤준규;임종한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.566-575
    • /
    • 2011
  • LPG 연료공급방식은 배출가스를 저감시킬 수 있는 유용한 시스템으로 연구가 지속적으로 진행되고 있다. LPG는 경유와 휘발유보다 높은 증기압과 낮은 점도와 표면장력을 유지하므로 고무류와 화학 반응에 따른 연료펌프의 기계적인 손상으로 내구성이 저하되고 있는 실정이다. 본 연구에서는 이러한 문제점을 해결하기 위해 LPLi 시스템에서 유지보수의 편리함과 가격경쟁을 위해 개발된 외장형 펌프를 사용하여 LPG 연료의 조성 및 온도에 따른 특성을 평가하고자 실험을 하였다. 그 결과로서, 내장형 펌프와 외장형 펌프의 성능차이는 거의 없으며 프로판 함유율이 높고, 연료온도가 높아짐에 따라 유량은 많아지나 펌프효율은 거의 차이가 없었다. 또한 LPG 자동차 연료공급장치의 특성상 연료조성 및 온도변화에 따른 차압도 거의 일정하게 나타내었다.

Fungal Production of Single Cell Oil Using Untreated Copra Cake and Evaluation of Its Fuel Properties for Biodiesel

  • Khot, Mahesh;Gupta, Rohini;Barve, Kadambari;Zinjarde, Smita;Govindwar, Sanjay;RaviKumar, Ameeta
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.459-463
    • /
    • 2015
  • This study evaluated the microbial conversion of coconut oil waste, a major agro-residue in tropical countries, into single cell oil (SCO) feedstock for biodiesel production. Copra cake was used as a low-cost renewable substrate without any prior chemical or enzymatic pretreatment for submerged growth of an oleaginous tropical mangrove fungus, Aspergillus terreus IBB M1. The SCO extracted from fermented biomass was converted into fatty acid methyl esters (FAMEs) by transesterification and evaluated on the basis of fatty acid profiles and key fuel properties for biodiesel. The fungus produced a biomass (8.2 g/l) yielding 257 mg/g copra cake SCO with ~98% FAMEs. The FAMEs were mainly composed of saturated methyl esters (61.2%) of medium-chain fatty acids (C12-C18) with methyl oleate (C18:1; 16.57%) and methyl linoleate (C18:2; 19.97%) making up the unsaturated content. A higher content of both saturated FAMEs and methyl oleate along with the absence of polyunsaturated FAMEs with ≥4 double bonds is expected to impart good fuel quality. This was evident from the predicted and experimentally determined key fuel properties of FAMEs (density, kinematic viscosity, iodine value, acid number, cetane number), which were in accordance with the international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as a biodiesel fuel. The low cost, renewable nature, and easy availability of copra cake, its conversion into SCO without any thermochemical pretreatment, and pelleted fungal growth facilitating easier downstream processing by simple filtration make this process cost effective and environmentally favorable.

LPLi 연료펌프 적용을 위한 저어널 베어링의 설계 적합성 해석 (A Design Fitness Analysis of Journal Bearings for LPLi Fuel Pump Application)

  • 이안성;김창업
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.324-329
    • /
    • 2009
  • In this study a complex design fitness analysis of journal bearings is carried out for the LPLi rotary-vane fuel pump application, as an external and horizontal installation, in LPG vehicles. Bearings considered in the analyses are plain and 3-axial groove journal bearings. Upon reflecting the fact that the primary failure mode of bearings in the application is a premature friction and wear failure of bearing metal due to a very low viscosity of liquid fuel LPG as a bearing lubricant, the performance factors of bearings used in an evaluation process of design fitness are a load carrying capacity and vibration suppression ability relative to a rated speed. At this time the design variables of bearings are a radial clearance and length. Results show that, in terms of both of the load carrying capacity and vibration suppression ability, the plain journal bearings are superior to the 3-axial groove journal bearings and among the plain bearings the smaller the bearing clearance (5>10>$15\;{\mu}m$) is and the longer the bearing length (6<8<10<12<14 mm) is, the better the bearing performance is.