• 제목/요약/키워드: Low vibration Blade

검색결과 69건 처리시간 0.023초

저압 터빈용 Finger 형 블레이드의 공진 방지를 위한 개선 및 시험 (Modification and Testing to Prevent the Resonance in a Finger-type Low Pressure Turbine Blade)

  • 하현천;이동진;류석주;정희찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.612-617
    • /
    • 2000
  • This paper describes the experience gained from the treatments for prevention of blade failure occurred in the low-pressure turbine. Some cracks due to high cycle fatigue were found at the blades in low-pressure turbines after long time operation. Such failure was mainly caused by the resonance of the blade with the vane passing frequency excitation. If a natural frequency of the blade exists near the excitation frequency, a resonant vibration can occur and leads to a large amount of stress which may cause fatigue failures in turbine blades. To avoid the resonance of the blade, some modifications have been performed and full-scaled mockup testing has been done to confirm the verification for modification. Test result shows that enlarging the span cover is very useful to change the natural frequency of the grouped blades effectively.

  • PDF

Paddle형 복합재료 헬리콥터 로터 블레이드 저진동 설계 기술 연구 (A Study on the Low Vibration Design of Paddle Type Composite Rotor Blade for Helicopter)

  • 김덕관;주진;이명규;홍단비
    • 한국항공우주학회지
    • /
    • 제31권4호
    • /
    • pp.99-104
    • /
    • 2003
  • 본 논문은 헬리콥터 로터 시스템 설계시 고려해야 할 구조동역학 분야와 차세대 저진동 블레이드를 설계하는 과정을 소개하였다. 일반적으로 로터 시스템 설계시 허브 하중 최소화, 지상공진 방지 및 저진동 특성 등을 만족하도록 고유 진동수 범위를 정하게 된다. 먼저 로터 시스템에 대한 회전수별 고유 진동수 도표를 통해 로터 회전 속도와 공진영역이 생기지 않도록 설계하며 다음으로 동체에 전달되는 진동 하중 크기를 예측하기 위해 회전시 블레이드에서 발생되는 하중을 허브 중심의 비회전계 좌표축 성분으로 전환한다. 헬리콥터 전진 비행속도에 따라 동체에 전달되는 하중 크기를 구하고 동체를 강체로 모델링하여 조종속에서 발생되는 가속도를 계산함으로써 저진동 특성을 예측하였다. 본 설계기법은 현재 수행중인 차세대 로터 시스템 개발에 적용되고 있으며 향후 국내 개발 로터 시스템에 유용하게 적용될 것이다.

저압터빈 블레이드의 균열 길이에 따른 동특성 변화 (Variation of Dynamic Characteristics of a Low Pressure Turbine Blade with Crack Length)

  • 양경현;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1281-1288
    • /
    • 2009
  • Variation of dynamic characteristics of a low pressure turbine blade with crack length is studied in this paper via both experiments and finite element model. Since most of the turbine blades used in domestic power plants are imported from abroad, it is necessary to understand their dynamic behavior in advance. When experimentally obtained natural frequencies and mode shapes are compared with those from FEM results, they are close to each other in their magnitude. Then, it is more feasible to use finite element model for analyzing the dynamic characteristics of a blade under various operation conditions (rotation speed, temperature, etc) as well as with a crack in the blade.

30MW 증기터빈 최종단 회전익 파단 사고 분석 (A Failure Analysis on the Broken Last Blade of 30MW Steam Turbine)

  • 김성봉;김인철;한승우;전채홍
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.5-15
    • /
    • 2007
  • In the recently released accident-investigation report on blade failure, almost 70% of blade failures was found at low pressure turbine blades, and it is well known that main cause is due to the vibration modes. This paper describes the systematic approach on the root cause of the blade failure at L 0 stage, 30MW single flow industrial steam turbine which had tripped by high vibration after ten-month commercial operation. A fracture was found at the only one damping wire hole of 59 blades, and crack was detected at three damping wire holes by NDT. According to the analysis result for the crack fracture surface and the chain of the sequential operational events, we come to the conclusion that a typical high cycle fatigue is the most dominant factor caused to the blade failure, the resonance frequency margin was narrowed by the cut damping wire and the high cycle vibration was amplified, and then the blade was broken at once by the centrifugal force when the crack reached the critical size.

  • PDF

LP Compressor Blade Vibration Characteristics at Starting Conditions of a 100 MW Heavy-duty Gas Turbine

  • Lee, An-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.895-903
    • /
    • 2004
  • In this paper are presented the blade vibration characteristics at the starting conditions of the low pressure multistage axial compressor of heavy-duty 100 MW gas turbine. Vibration data have been collected through strain gauges during aerodynamic tests of the model compressor. The influences of operating modes at the starting conditions are investigated upon the compressor blade vibrations. The exciting mechanisms and features of blade vibrations are investigated at the surge, rotating stall, and buffeting flutter. The influences of operating modes upon blade dynamic stresses are investigated for the first and second stages. It is shown that a high dynamic stress peak of 120 MPa can occur in the first stage blades due to resonances with stall cell excitations or with inlet strut wake excitations at the stalled conditions.

증기터빈 블레이드의 공진 방지를 위한 실험 연구 (An Experimental Study for Preventing the Resonance of Steam Turbine Blade)

  • 하현천;이동진;류석주
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.410-415
    • /
    • 2001
  • This paper describes an experimental analysis for improving the stability of blade failure due to the vibration resonance, which happens in the low-pressure steam turbine. Some cracks due to high cycle fatigue were found in the blades of a low-pressure turbine after long time operation. Impact test showed that such failure was mainly caused by the resonance. In other words, since one of the natural frequencies of the grouped blade is very close to the excitation frequency of the nozzle, the resonant vibration leads to a large amplitude of displacement and results in a large amount of stress that may cause fatigue failures in the blades. It is interesting that the blade failures occur only at blades neighboring with the nodal points of the natural vibration mode whose natural frequency is close to the nozzle passing frequency. The effective methods for increasing the reliability against the blade vibration are a heightening the fatigue limit of the blade using an advanced material and a removing the resonance away from the operating speed. It is well known that the removal of theresonance could be obtained by the installation of different types of shrouds, wires, and links between the blades as well as by the chance of the number of nozzles. In the present work, two kinds of modification for avoiding the resonance haute been considered; 1) slot-type finger, 2) long span cover. Full-scale mockup tests have been performed in order to confirm the verification for modification in the shop. Test results show that the use of long span cover is very useful to change the natural frequencies of the grouped blade and to avoid the resonance effectively.

  • PDF

블레이드 기어를 적용한 X-밴드 안테나 미소진동 절연성능 (Micro-vibration Isolation Performance of X-band Antenna using Blade Gear)

  • 전수현;권성철;김태홍;김용훈;오현웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.893-899
    • /
    • 2014
  • X-band antenna has been widely used to effectively transmit the high resolution image data from the observation satellite to the ground station. To achieve above mission, X-band antenna is mainly composed of the 2-axis gimbal system using stepping motors and gears. However, the micro-vibration induced by the stepping motor actuation and the imperfect gear teeth alignment during this on-orbit operation is the main source of image quality degradation. In this paper, X-band antenna combined with a blade gear for micro-vibration isolation was suggested and investigated. The structural safety of the blade gear with low rotational stiffness was confirmed by structure analysis based on the derived torque budget. The isolation performance of the X-band antenna with the blade gear was verified through micro-vibration measurement test using the dedicated micro-vibration measurement device proposed in this study.

  • PDF

중장비 축류홴 저소음화 기법 (Low Noise Techique of Axial Fan in Heavy Equipments)

  • 정기훈;최한림;김용제;이덕주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.388-395
    • /
    • 2000
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time, the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. The prediction model, which allowed the calculation of acoustic pressure at the blade passing frequency and it's harmonics, has been developed by Farrasat. This theory is founded upon the acoustic radiation of unsteady forces acting on blade. To calculate the unsteady resultant force over the fan blade. Time-Marching Free-Wake Method are used. The ideas of low noise technique are obtained from Blade-Momentum Methods. In this paper, the discussion is confined to the performance and discrete noise of axial fan in heavy equipments.

  • PDF

Structural Design on Small Scale Sandwich Composite Wind Turbine Blade

  • Seongjin Ahn;Hyunbum Park
    • International Journal of Aerospace System Engineering
    • /
    • 제10권2호
    • /
    • pp.1-4
    • /
    • 2023
  • Even though the recent development trend of wind turbine systems has been focused on larger MW Classes, the small-scale wind turbine system has been continuously developed because it has some advantages due to easy personnel establishment and use with low cost and energy saving effect. This work is to propose a specific structural design and analysis procedure for development of a low noise 500W class small wind turbine system which will be applicable to relatively low wind speed region like Korea. The proposed structural feature has a skin-spar-foam sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Moreover this type of structure has good behaviors for reduction of vibration and noise. Structural analysis including load cases, stress, deformation, buckling and vibration was performed using the Finite Element Method. In order to evaluate the designed blade structure the structural tests were done, and their test results were compared with the estimated results.

무베어링 로터 훨타워 시험을 위한 무힌지 블레이드 강성보강에 따른 동특성 연구 (Dynamic Characteristic Study of Hingeless Blade Stiffness Reinforcement for Bearingless Rotor Whirl Tower Test)

  • 김태주;윤철용;기영중;김승호;정성남
    • 한국소음진동공학회논문집
    • /
    • 제23권2호
    • /
    • pp.105-111
    • /
    • 2013
  • Whirl tower test is conducted basically during helicopter rotor system development process. And for whirl tower test of rotor hub system, new design blade or existing blade which is remodeled for new rotor hub system is used. Because of simple shape and efficient aerodynamic characteristic, BO-105 helicopter blade is used for helicopter rotor hub development project widely. Originally BO-105 blade is used for hingeless hub system and blade root is used to flexure. So flap stiffness and lag stiffness at blade root area is relatively low compare with airfoil area. So, in order to apply the BO-105 blade to bearingless hub, blade root area have to be reinforced. And in this process, blade root area's section property is changed. In this paper, we suggest reinforcement method of BO-105 blade root area and study dynamic characteristic of bearingless rotor system with reinforcement BO-105 blade.