• Title/Summary/Keyword: Low tide

Search Result 301, Processing Time 0.033 seconds

Tidal and Seasonal Variations of Nutrients in Keunso Bay, the Yellow Sea (서해 근소만에서 영양염의 조석 및 계절 변화)

  • Kim, Dong-Seon;Kim, Kyung-Hee
    • Ocean and Polar Research
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • In order to find the effect of intertidal sediments on nutrient cycle in coastal environment, we measured ammonia, nitrate, phosphate, and silicate concentrations every hour during at least 12 hours in the entrance of Keunso Bay during four seasons. The content of ammonia and silicate do not change considerably with season, but nitrate shows large seasonal variation. In summer, nitrate concentration was much lower than in other seasons, which resulted from large biological uptake and active denitrification in intertidal sediments during summer. Phosphate also exhibit seasonal variations, but not that large like nitrate. N/P and N/Si ratios were lower in summer than in other seasons, which was due to active denitrification in the intertidal sediments during summer. For all seasons, ammonia concentrations were higher at low tide than at high tide, but nitrate concentrations were higher at high tide. Dissolved inorganic nitrogen concentrations measured in spring, summer, and winter were higher at high tide than at low tide, but in fall, they were higher at low tide than at high tide. For spring and winter, phosphate and silicate concentrations were higher at low tide than at high tide, while in summer and fall, they were higher at high tide than at low tide. In Keunso Bay, intertidal sediments affect significantly the nutrient cycle around the coastal areas. The intertidal sediments act as a source for ammonia and silicate, but as a sink for nitrate. However, phosphate is not considerably influenced by intertidal sediments.

Satellite Monitoring and Prediction for the Occurrence of the Red Tide in the Middle Coastal Area in the South Sea of Korea

  • Yoon, Hong-Joo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.21-30
    • /
    • 2003
  • It was studied the relationship between the red tide occurrence and the meteorological and oceanographic factors, the choice of potential area for red tide occurrence, and the satellite monitoring for red tide. From 1990 through 2001, the red tide continuously appeared and the number of red tide occurrence increased every year. Then, the red tide bloomed during the periods of July and August. An important meteorological factor governing the mechanisms of the increasing in number of red tide occurrence was heavy precipitation. Oceanographic factors of favorable marine environmental conditions for the red tide formation included warm water temperature, low salinity, high suspended solid, low phosphorus, low nitrogen. A common condition for the red tide occurrence was heavy precipitation 2∼4 days earlier, and the favorable conditions for the red tide formation were high air temperature, proper sunshine and light winds for the day in red tide occurrence. From satellite images, it was possible to monitor the spatial distributions and concentrations of red tide. It was founded the potential areas for red tide occurrence in August 2000 by CIS conception: Yeosu∼Dolsan coast, Gamak bay, Namhae coast, Marado coast, Goheung coast, Deukryang bay, respectively.

Estimation of potential area for red tide occurrence in the Korean coasts by Marine GIS

  • Yoon, Hong-Joo;Whang, Wha-Jeung
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.876-878
    • /
    • 2003
  • It was studied on the choice of potential area for red tide occurrence from oceanographic factors. Oceanographic factors of favorable marine environmental conditions for the red tide formation included warm water temperature, low salinity, high suspended solid, low phosphorus, low nitrogen. It was founded the potential areas for red tide occurrence in August 2000 by GIS conception: Yeosu~Dolsan coast, Gamak bay, Namhae coast, Marado coast, Goheung coast, Deukryang bay, respectively.

  • PDF

Characteristics of Red Tide Blooms in the Lower reaches of Taehwa River (태화강 하류의 적조발생 특성)

  • Cho, Hong-Je;Yoon, Yeong-Bae;Kang, Ho-Seon;Yoon, Sung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.453-462
    • /
    • 2011
  • This study was analyzed to determine the cause of red tide at 10 and 30 days antecedental rainfall, stage and discharge in the Taehwa River, tidal data of Ulsan port, also, it was analyzed variation of red tide population, salinity, BOD, COD, T-N, T-P at S1, S2 each point. Most of the red tide in the Taehwa River occurred by provision of proper nutrients with antecedent, the proximity between discharge and low-flow capacity, and stage and discharge of stabilized condition after the sea water was inflowed by maximum tide difference. Red tide population is not nearly related to the change of salinity, the Taehwa River seems specific features of Non-coastal rivers downstream, because red tide was occurred when salinity quite low-end condition.

Characteristics of Zooplankton Community in the Udolmok Waterway, Korea (울돌목 수로 동물플랑크톤의 군집 특성)

  • Yoo, Jeong-Kyu;Jung, Jung-Ho;Nam, Eun-Jung;Myung, Chul-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.201-211
    • /
    • 2006
  • 55 zooplankton taxa including 35 copepoda were observed in the Uldolmok waterway during the sampling period from August 2003 to April 2004. Neritic species showed the seasonal species fluctuation, and oceanic warm-water species occurred throughout the year. The number of taxa tended to increase at the flood tide from low tide to high tide, and to decrease at the ebb tide from high tide to low tide. Therefore, species composition of zooplankton in the Uldolmok waterway seemed to be affected by the inflow of oceanic waters with oceanic species all the year round. Total abundance of zooplankton ranged from 104 (February 2004) to 2,717 indiv. $m^{-3}$ (August 2003). According to the tidal cycle, the change of total abundance was more irregular and variable in November 2003 and February 2004 than August 2003 and April 2004. In August 2003 and April 2004, total abundance was low at the strong tide, and was high at low and high tide when tidal current was weak. Average abundances of dominant species such as Paracalanus indicus, Cirripedia nauplii and Acartia hongi were on the order of twice higher at ebb tide than flood tide. However, their abundances were also subject to wide fluctuation within flood tide and ebb tide. The changes of environmental parameters such as water temperature, salinity and chlorophyll-a concentration were negligible along the tidal periods in the Uldolmok waterway. Therefore, the advection, transfer and loss of zooplankton population derived from strong tidal current and eddy formed by the local difference of tidal velocity lead temporal variation of zooplankton community more complex and variable in the Uldolmok waterway.

Impacts of Land Cover Change of Tidal Flats on Local Meteorology in Gyeonggi Bay, West Sea of Korea (경기만 갯벌의 지표면 토지피복 변화가 국지기상에 미치는 영향 평가)

  • An, Hye Yeon;Kim, Yoo-Keun;Jeong, Ju-Hee
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.399-409
    • /
    • 2017
  • The impact of land cover changed by tidal flats on local meteorology in Gyeonggi Bay was quantitatively evaluated based on a numerical modeling approach during 18 days (21 June to 9 July 2013). The analysis was carried out using three sets of simulation scenarios and the land cover of tidal flats for each simulation was applied as follows: (1) the herbaceous wetland representing coastal wetlands (i.e., EXP-BASE case), (2) the barren or sparsely vegetated representing low tide (i.e., EXP-LOW case), (3) the water bodies representing high tide (i.e., EXP-HIGH case). The area of tidal flats was calculated as about $552km^2$ (the ratio of 4.7% for analysis domain). During the daytime, the change (e.g. wetlands to water) of land cover flooded by high tide indicated the decrease of temperature (average $3.3^{\circ}C$) and the increase of humidity (average 13%) and wind speed (maximum $2.9m\;s^{-1}$). The changes (e.g. wetlands to barren or sparsely vegetated) of land cover induced by low tide were smaller than those by high tide. On the other hands, the effects of changed land cover at night were not apparent both high tide and low tide. Also, during the high tide, the meteorological change in tidal flats affected the metropolitan area (about 40 km from the tidal flat).

Hydrodynamic Characteristics of Tide-Adapting Low-Crested Structure (조위차 극복형 저마루 구조물의 수리특성)

  • Hur, Dong-Soo;Jeong, Yeon-Myeong;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.68-75
    • /
    • 2019
  • A low-crested structure (LCS) is an excellent feature not only because it provides shore protection but also because it is fully submerged. However, in order to properly control waves, it is necessary to maintain a certain range of crest height and width in consideration of the wave dimensions at the installation area. According to previous studies, an LCS has some wave breaking effect when the crest width is more than a fourth of the incident wavelength and the crest depth is less than a third of the incident wave height. In other words, if the crest width of the LCS is small or the crest depth is large, it cannot control the wave. Therefore, when an LCS is installed in a large sea area with a great tidal range in consideration of the landscape, waves cannot be blocked at high tide. In this study, the hydraulic performances of a typical trapezoidal LCS with a constant crest height and a low-crested structure with an adjustable crest height, which was called a tide-adapting low-crested structure (TA-LCS) in this study, were compared and evaluated under various wave conditions through hydraulic experiments. It was found that the wave transmission coefficients of the TA-LCS at high tide were lower than the values for the typical LCS based on empirical formulas. In addition, the hydraulic performances of the TA-LCS for wave reflection control were 12.9?30.4% lower than that of the typical LCS. Therefore, the TA-LCS is expected to be highly effective in controlling the energy of incoming waves during high tide even in a macro-tidal area.

Tidal Currents In The Channel Near Incheon Harbour (인천항부근 수로의 조류)

  • Bong, Jong Hon
    • 한국해양학회지
    • /
    • v.13 no.1
    • /
    • pp.29-34
    • /
    • 1978
  • Simultaneous tidal current observation at five or seven stations on the channel near Incheon Habour was conducted at neap, mean and spring tides during the period of August 16 to August 27, 1976 and the characteristic of tidal currents with each tide was studied by the analysis of these data. Times of slack refer to the times of high and low waters at neap, mean and spring tides seem to be small. Times of maximum current refer to the times of high and low waters at the mean tide tends to appear earlier than that of the neap tide and later than that of the spring tide. The velocity ratio of maximum ebb current to maximum flood current at the mean tide has larger value than that of neap tide and has smaller value than that of spring tide. The current velocity ratio of spring tide to neap tide and to mean tide are approximately 1.8 and 1.3, respectively.

  • PDF

Characteristics of Meteorological and Marine Environments for the Red Tide Occurrence of Mid-South Sea in Korea (한국 남해중부해역의 적조발생에 관한 기상 및 해양환경 특성)

  • 윤홍주;김승철;박일흠
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.845-852
    • /
    • 2003
  • This study deals with the relationship between the red tide occurrence and the meteorological and marine factors, the prediction of areas where the red tide is likely to occur based on the information, and the satellite monitoring for the red tide in mid-South Sea of Korea. From 1990 to 2001, the red tide was observed every year and the number of occurrences increased as well. The red tide mostly occurred in July, August, and September. The most important meteorological factor governing the mechanisms of the increase in the number of red tide occurrences is found to be a heavy precipitation. It was found that the favorable marine environmental conditions for the red tide formation are some of marine factors such as the warm water temperature, the low salinity, the high suspended solid, the low phosphorus, and the low nitrogen. The necessary conditions for the red tide occurrence are found to be the heavy precipitation (23.4-54.5 mm) for 2∼4 days, the warm temperature $(24.6∼25.9^{\circ}C)$, proper sunshine (2∼10.3 h), and light winds (2∼4.6 m/s & SW) for the day in red tide occurrence. It was possible to monitor the spatial distributions and concentration of the red tide using the satellite images. It was found that the likely areas for red tide occurrence in August 2000 were Yosu - Dolsan coast, Gamak bay, Namhae coast, Marado coast, Goheung coast, and Deukryang bay.

Characteristics of Meteorological and Marine Environments for the Red Tide Occurrence in Mid-South Sea of Korea (한국 남해중부해역의 적조발생에 관한 기상 및 해양환경 특성)

  • 윤홍주;김승철;박일흠
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.323-328
    • /
    • 2003
  • This study deals with the relationship between the red tide occurrence and the meteorological and marine factors, the prediction of areas where the red tide is likely to occur based on the information, and the satellite monitoring for the red tide in mid-South Sea of Korea. From 1990 to 2001, the red tide was observed every year and the number of occurrences increased as well. The red tide mostly occurred in July, August, and September. The most important meteorological factor governing the mechanisms of the increase in the number of red tide occurrences is found to be a heavy precipitation. It was found that the favorable marine environmental conditions for the red tide formation are some of marine factors such as the warm water temperature, the low salinity, the high suspended solid, the low phosphorus, and the low nitrogen. The necessary conditions for the red tide occurrence are found to be the heavy precipitation (23.4∼54.5 mm) for 2∼4 days, the warm temperature (24.64-25.85 $^{\circ}C$), proper sunshine (2∼10.3 h), and light winds (2∼4.6 m/s & SW) for the day in red tide occurrence. It was possible to monitor the spatial distributions and concentration of the red tide using the satellite images. It was found from this study that the likely areas for red tide occurrence in August 2000 were Yosu ∼ Dolsan coast, Gamak bay, Namhae coast, Marado coast, Goheung coast, and Deukryang bay.

  • PDF