• 제목/요약/키워드: Low temperature transformation ferrites

검색결과 5건 처리시간 0.017초

극저탄소 냉연강판에서 합금원소 및 어닐링조건이 미세조직에 미치는 영향 (Effects of Alloy Additions and Annealing Parameters on Microstructure in Cold-Rolled Ultra Low Carbon Steels)

  • 정우창
    • 열처리공학회지
    • /
    • 제17권2호
    • /
    • pp.78-86
    • /
    • 2004
  • Effects of the annealing parameters on the formation of ferrites transformed at low temperatures were studied in cold-rolled ultra low carbon steels with niobium and/or chromium. Niobium and chromium were found to be effective in the formation of the low temperature transformation ferrites. The low temperature transformation ferrites more easily formed when both higher annealing temperature and longer annealing time, allowing substitutional alloying elements to distribute between phases, are in combination with faster cooling rate. It was found from EBSD study that the additions of niobium or chromium resulted in the increase in the numbers of high angle grain boundaries and the decrease in those of the low angle grain boundaries in the microstructures. Both granular bainitic ferrite and bainitic ferrite were characterized by the not clearly etched grain boundaries in light microscopy because of the low angle grain boundaries.

강가공에 의한 Nb함유 저탄소강의 오스테나이트 재결정과 페라이트 미세화 (Austenite Recrystallization and Ferrite Refinement of a Nb Bearing Low Carbon Steel by Heavy Hot Deformation)

  • 이상우
    • 열처리공학회지
    • /
    • 제18권1호
    • /
    • pp.3-11
    • /
    • 2005
  • Using various thermo-mechanical schedules characterized by varying reheating temperature, deformation temperature and strain, the austenite recrystallization and ferrite refinement of a Nb bearing low carbon steel(0.15C-0.25Si-1.11Mn-0.04Nb) were investigated. For single pass heavy deformations at $800^{\circ}C$, the 40% deformed austenite was not recrystallized while the 80% deformed one was fully recrystallized. Ferrite grains formed in the 80% deformed specimen was not very small compared with those in the 40% deformed specimen, which implied the recrystallized austenite was not more beneficial to ferrite refinement than the non-recrystallized one. In case of deformation in low temperature austenite region, a multi-pass deformation made finer ferrites than a single-pass deformation, as the total reduction was the same, due to more ferrite nucleation sites in the non-recrystallization of austenite for multi-pass deformation. When specimen was deformed at $775^{\circ}C$ that was $10^{\circ}C$ higher than $Ar_3$, the ferrite of about $1{\mu}m$ was formed through deformation induced ferrite transformation(DIFT), and the amount of ferrite was increased with increasing reduction. Dislocation density was very high and no carbides were observed in DIFT ferrites, presumably due to supersaturated carbon solution. By deformation in two phase(50% austenite+50% ferrite) region the very refined ferrite grains of less than $1{\mu}m$ were formed certainly by recovery and recrystallization of deformed ferrites and, a large portion of ferrites were divided by subgrain boundaries with misorientation angles smaller than 10 degrees.

Immobilization of Metal lons Using Low-Temperature Calcination Techniques of Spinel-ferrites

  • Yen, Fu-Su;Kao, Hsiao-Chiun;Chen, Wei-Chien
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.106-110
    • /
    • 2001
  • Formation of stoichiometric lithium-, nickel-, and zinc- ferrites by calcining organo-metallic precursors a temperature below 40$0^{\circ}C$ is examined using DTA/TG, and XRD techniques. It attempts to simulate th immobilization of metal ions in industrial liquid influents (waste) through the synthesis of stoichiometric spinel ferrites (SSF). Two steps of the SSF formation during thermal treatments are noted. The transformation of magnetite to ${\gamma}$ - Fe$_2$O$_3$and subsequent first formation of SSF were observed at temperatures ranging from 200 to 45$0^{\circ}C$. Th formation of cation-containing ${\gamma}$-Fe$_2$O$_3$and subsequent second formation of the ferrite occurred at temperature ranges of < 45$0^{\circ}C$ and 500 to $650^{\circ}C$, depending on the heating rate used. Then the temperature range of 200t 45$0^{\circ}C$ is critical to the performance of the technique, because a calcination at the range would lead to a complete formation of SSF, avoiding the occurrences of ${\gamma}$-Fe$_2$O$_3$and ion-containing ${\gamma}$-Fe$_2$O$_3$. If not, so $\alpha$-Fe$_2$O$_3$would occur. And annealing at temperature above $650^{\circ}C$ must be employed by which solid-state reactio of $\alpha$-Fe$_2$O$_3$with metal ions (possibly metal oxides) to form SSF can be conducted.

  • PDF

고변형능 라인파이프강의 미세조직과 기계적 특성에 미치는 압연 및 냉각 조건의 영향 (Effects of Rolling and Cooling Conditions on Microstructures and Mechanical Properties of High-Deformable Pipeline Steels)

  • 이상인;황병철
    • 열처리공학회지
    • /
    • 제27권5호
    • /
    • pp.235-241
    • /
    • 2014
  • Effects of rolling and cooling conditions on microstructures and mechanical properties of high-deformable pipeline steels were investigated in this study. Six kinds of pipeline steels were fabricated by varying rolling and cooling conditions, and their microstructures were analyzed by scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy. Tensile and Charpy impact tests were conducted on the steels in order to examine the mechanical properties. The steels rolled in the two-phase region showed better low-temperature toughness than those in the single-phase region due to the larger amount of ferrites having high-angle boundaries, although they have lower strength and absorbed energy. The steel rolled in single-phase and finish-cooled at higher temperature showed a good combination of high strength and good low-temperature toughness as well as excellent deformability of the lowest yield ratio and the highest uniform elongation because of the presence of fine ferrite and a mixture of various low-temperature transformation phases.

X80급 API 강의 바우싱거 효과에 미치는 미세조직의 영향 (The Influence of Microstructure on the Bauschinger Effect in X80 Grade API Steel)

  • 박재신;김대우;장영원
    • 소성∙가공
    • /
    • 제15권2호
    • /
    • pp.118-125
    • /
    • 2006
  • API steel is used for line-pipe to transport the oil and natural gas. As the recent trends in the development of API steel are towards the use of larger diameter and thicker plate, many researches have been studied to achieve higher strength, higher toughness and lower yield ratio in API steel. However, the strength of API steel after pipe forming is changed depending on the competition of the Bauschinger effect and work hardening which are affected by the strain history during pipe forming process. So, the purpose of this study is to investigate the influence of microstructure on the Bauschinger effect for API steel. To change the microstructure of API steel we have changed the hot rolling condition and the amounts of V and Cu addition. The compression-tensile test and the microstructure observation by OM and TEM were conducted to investigate the yield strength drop and the correlation between the Bauschinger effect and microstructure of API steel. The experimental results show that the increase of polygonal ferrites volume fraction increases the Baushcinger effect due to the back stress which comes from the increase of mobile dislocation density at polygonal ferrite interior during the compressive deformation. The hot rolling condition was more effective on the Bauschinger effect in API steel than the small amount of V and Cu addition.