• Title/Summary/Keyword: Low temperature toughness

Search Result 195, Processing Time 0.027 seconds

Microstructural Characteristics of 800 MPa Grade High Strength Steel Weld Metals (800 MPa급 고강도강 용접금속의 미세조직 특성 비교 연구)

  • Lee, Jae-Hee;Kim, Sang-Hoon;Yoon, Byung-Hyun;Kim, Hwan-Tae;Kil, Sang-Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • Microstructural characteristics of two high strength (600 MPa & 800 MPa) weld metals produced by flux-cored arc welding process (FCAW) were evaluated. The 600 MPa grade weld metal was consisted of 75% acicular ferrite and 25% ferrite which was formed at relatively high temperature (grain boundary ferrite, widmanstatten ferrite, polygonal ferrite). However, the 800 MPa grade weld metal was composed of about 85% acicular ferrite and 15% low temperature forming phases (bainite, martensite). The prior austenite grain size of 800 MPa grade weld metal was decreased by solute drag force. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by a transmission electron microscopy (TEM). In both 600 MPa and 800MPa grade weld metals, the inclusions were mainly consisted of Ti-oxide and Mn-oxide, and the average size of inclusions was $0.7{\mu}m$. The 800 MPa grade weld metal exhibited higher tensile strength and similar toughness compared with the 600 MPa grade weld metal. This result is mainly due to a higher fraction of low temperature products and a lower fraction of grain boundary ferrite in the 800 MPa grade weld metal.

A Study on the Toughness of Die Steel Coated with VC (vanadium carbide) by Immersing in Molten Borax Bath (용융염 침적법에 의한 VC Coating 금형강의 인성에 관한 연구)

  • Lee, B.K.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.59-69
    • /
    • 1993
  • Bending fracture strength test and impact strength test were made for VC coated die steels treated by immersing in molten borax bath and for hardened steels which were quenched and tempered, in order to clarify the effect of VC coating at $1000^{\circ}C$. The material used in this investigation was representative cold and hot work die steels STD11, STD61. The results obtained are as follows. 1) The bending fracture strength of VC coated die steel (STD11, STD61) was lessened with increasing the thickness of the VC coated layer. 2) With increasing the immersing time (imcreasing the thickness of the VC coated layer) the maximum hardness was obtained at 480 minutes holding, after that holding time hardness was decreased. 3) The impact strength of the VC coated die steel was not decreased. In the casse of STD11, it was higher than that of the quenched condition especially at low tempering temperature, and vice versa at high tempering temperature. However in the case of STD61 shows the result to the contrary.

  • PDF

Effect of Cooling Velocity on the Microstructures and Mechanical Properties of Si, Mn, V added HSLA Steels (Si, Mn, V이 첨가된 비조질강의 미세조직 및 기계적 성질에 미치는 냉각속도의 영향)

  • Park, Yon-Seo;Choi, Chang-Soo;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.267-274
    • /
    • 2001
  • Microalloyed steels, which substituted by conventional quenched and tempered steels, have been used in a wide variety of structural and engineering application. The main driving force for preference of MA steels is a cost reduction which can be achieved by an omission of heat treatment. In this study, low carbon martensitic MA steels in 0.18C-0.30(0.60)Si-2.00(1.80)Mn-0.05S-1.5Cr-0.05(0.10)V-0.015Ti(wt%) were investigated to know the effects of cooling method on the mechanical properties and microstructures of Si, Mn, V added microalloyed steel at different reheating temperature. Microstructure of oil quenched steels which were comprised lath martensite, auto-tempered martensite and retained austenite, had more various structure than that of air cooled steel made of mainly bainite. Therefore, oil quenched steels, which had more various microstructure, had better strength-toughness balance compare to air cooled steels. In the impact test, fracture mode of oil quenched steels, which showed good mechanical properties, were dimple, but that of air cooled steels were cleavage.

  • PDF

Molecular dynamic studies for elastic constant of SiC crystal at high temperature (고온에서 SiC 결정의 탄성율에 대한 분자동역학연구)

  • Park, B.W.;Shin, H.R.;Kim, J.H.;Im, J.I.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.232-236
    • /
    • 2010
  • Silicon carbide (SiC) ceramics are widely used in the application of high-temperature structural devices due to their light weight as well as superior hardness, fracture toughness, and temperature stability. In this paper, we employed classical molecular dynamics simulations using Tersoff's potential to investigate the elastic constants of the SiC crystal at high temperature. The stress-strain characteristics of the SiC crystal were calculated with the LAMMPS software and the elastic constants of the SiC crystal were analyzed. Based on the stress-strain analysis, the SiC crystal has shown the elastic deformation characteristics at the low temperature region. But the slight plastic deformation behavior was shown as applied the high strain over $1,000^{\circ}C$. Also the elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa as increased the temperature to $1,250^{\circ}C$.

Thermodynamic Calculation and Observation of Microstructural Change in Ni-Mo-Cr High Strength Low Alloy RPV Steels with Alloying Elements (압력용기용 Ni-Mo-Cr계 고강도 저합금강의 합금원소 함량 변화에 따른 미세조직학적 특성변화의 열역학 계산 및 평가)

  • Park, Sang Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.771-779
    • /
    • 2008
  • An effective way of increasing the strength and fracture toughness of reactor pressure vessel steels is to change the material specification from that of Mn-Mo-Ni low alloy steel(SA508 Gr.3) to Ni-Mo-Cr low alloy steel(SA508 Gr.4N). In this study, we evaluate the effects of alloying elements on the microstructural characteristics of Ni-Mo-Cr low alloy steel. The changes in the stable phase of the SA508 Gr.4N low alloy steel with alloying elements were evaluated by means of a thermodynamic calculation conducted with the software ThermoCalc. The changes were then compared with the observed microstructural results. The calculation of Ni-Mo-Cr low alloy steels confirms that the ferrite formation temperature decreases as the Ni content increases because of the austenite stabilization effect. Consequently, in the microscopic observation, the lath martensitic structure becomes finer as the Ni content increases. However, Ni does not affect the carbide phases such as $M_{23}C_6 $ and $M_7C_3$. When the Cr content decreases, the carbide phases become unstable and carbide coarsening can be observed. With an increase in the Mo content, the $M_2C$ phase becomes stable instead of the $M_7C_3$ phase. This behavior is also observed in TEM. From the calculation results and the observation results of the microstructure, the thermodynamic calculation can be used to predict the precipitation behavior.

A study on the fatigue and fracture characteristics of localized nuclear reactor vessel material (국산 원자로용기 재료의 피로 및 파괴특성 연구)

  • Jeong, Sun-Eok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1626-1635
    • /
    • 1997
  • It is important to ensure the reliability of the first localized reactor vessel steel. To satisfy with this purpose, a study on the impact/hardness, low cycle fatigue(LCF), crack growth rate(da/dN) and fracture toughness( ) of base material(BM) and weld metal(WM) were performed under room temperature air and corrosion conditions. A summary of the results is as folows : (1) Charpy impact absorbed energy of BM was the highest value, heat affected zoon(HAZ) and the lowest, WM. The hardness of BM was similar to HAZ. (2) Coefficients of Manson equation using the monotonic tensile test data were obtained for the present material. (3) The effects of stress ratio and ambient (120.deg. C and NaCl) condition on da/dN were investigated, da/dN with NaCl condition expressed the highest value. (4) The results of Charpy V-notch impact test had good correlation with $K_{IC}$ characteristics and the lowest curve of $K_{IC}$ for BM was derived, more researches about WM and HAZ are required hereafter.

Effect of Welding variables on White Spots Formation on the autogeneous GTA Welds of 36% Nickel-Iron alloy (36% Nickel-Iron 합금의 자동 GTA 용접부 반점 형성에 미치는 용접 변수의 영향)

  • Lee, Hee-Keun;Park, Jong-Min;Kim, Jin-Yong;Huh, Man-Ju
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.38-38
    • /
    • 2009
  • 36 percent nickel-iron alloy possesses a useful combination of low thermal expansion, moderately high strength and good toughness at temperatures down to that of liquid helium, $-269^{\circ}C$. These propeties coupled with good weldability and desirable physical properties make this alloy attractive for many cryogenic applications such as the cargo containment system in Liquefied Natural Gas carriers and pipes for low temperature. Generally, welding method of the 36% nickel-iron is applied with the manual and autogeneous GTAW. Lately white spots have been observed on the some autogeneous GTA welds of them. But the white spot formation have not been studied yet. This paper covers the analysis results of the white spots formation as changing welding variables.

  • PDF

Microstructure and Mechanical Properties of β-SiAlON Ceramics Fabricated Using Self-Propagating High-Temperature Synthesized β-SiAlON Powder

  • Kim, Min-Sung;Go, Shin-Il;Kim, Jin-Myung;Park, Young-Jo;Kim, Ha-Neul;Ko, Jae-Woong;Yun, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.292-297
    • /
    • 2017
  • ${\beta}-SiAlON$, based on its high fracture toughness, good strength and low abrasion resistance, has been adopted in several industrial fields such as bearings, turbine blades and non-ferrous metal refractories. In general, ${\beta}-SiAlON$ is fabricated by reactive sintering using expensive $Si_3N_4$ and AlN as starting materials. On the other hand, in this study, a cheaper ${\beta}-SiAlON$ starting powder synthesized by SHS was employed to improve price competitiveness compared to that of the reactive sintering process. ${\beta}-SiAlON$ ceramics with various content of the sintering additive $Y_2O_3$ up to 7 wt% were fabricated by conventional pressureless sintering at $1800^{\circ}C$ for 2 to 8 h under $N_2$ pressure of 0.1 MPa. The specimen with 3 wt% $Y_2O_3$ exhibited the best mechanical properties: hardness of 14 GPa, biaxial strength of 830 MPa, fracture toughness of $5MPa{\cdot}m^{1/2}$ and wear rate of about $3{\times}10^{-6}mm^3/N{\cdot}m$.

A Study on the Stress Relief Cracking of HSLA-100 and HY-100 steels (HSLA-100강 및 HY-100강의 응력제거처리 균열에 관한 연구)

  • 박태원;심인옥;김영우;강정윤
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.48-57
    • /
    • 1996
  • A study was made to examine the characteristics of base metal and stress relief cracking(SRC) of heat affected zone(HAZ) for HY-100 and Cu-bearing HSLA-100 steels. The Gleeble thermal/mechanical simulator was used to simulate the SRC/HAZ. The details of mechanical properties of base plate and SRC tested specimens were studied by impact test, optical microscopy and scanning electron microscopy. The specimens were aged at $650^{\circ}C$ for HSLA-100 steel and at $660^{\circ}C$ for HY-100 steel and thermal cycled from $1350^{\circ}C$ to $25^{\circ}C$ with a cooling time of $\Delta$t_${800^{circ}C/500^{circ}C}$=21sec. corresponds to the heat input of 30kJ/cm. The thermal cycled specimens were stressed to a predetermined level of 248~600MPa and then reheated to the stress relief temperatures of $570~620^{\circ}C$. The time to failure$(t_f)$ at a given stress level was used as a measure of SRC susceptibility. The strength, elongation and impact toughness of base plate were greater in HSLA-100 steel than in HY-100 steel. The time to failure was decreased with increasing temperature and/or stress. HSLA-100 steel was more susceptible to stress relief cracking than HY-100 steel under same conditions. It is thought to be resulted from the precipitation of $\varepsilon$-Cu phase by dynamic self diffusion of solute atoms. By the precipitation of $\varepsilon$-Cu phase, the differential strengthening of grain interior relative to grain boundary may be greater in the Cu-bearing HSLA-100 steel than in HY-100 steel. Therefore, greater strain concentration at grain boundary of HSLA-100 steel results in the increased SRC susceptibility. The activation energies for SRC of HSLA-100 steel are 103.9kcal/mal for 387MPa and 87.6kcal/mol for 437MPa and that of HY-100 steel is 129.2kcal/mol for 437MPa.

  • PDF

Effect of Ni and Mo on Mechanical Properties of Submerged Arc Welds with Flexible Glasswool Backing (FGB SAW 용접부 물성에 미치는 Ni과 Mo의 영향에 관한 연구)

  • Jee, C.H.;Choi, J.T.;Kim, D.J.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.55-55
    • /
    • 2009
  • FGB(Flexible Glasswool Backing) Submerged Arc Welding has been one of the main welding processes for one side butt welding in shipbuilding industries, which can efficiently improve the welding productivity by the addition of a supplementary filler metal into the molten weld pool. As recent ships have become larger in size, the application of high tensile and higher grade of steels has been continuously increased. Single pass FGB SA welding process accompanies such a high heat input when welding thick plates that the mechanical properties of weld metal can be dramatically degraded. This study has been performed in order to obtain high toughness and tensile properties of high heat input FGB SA welds, and to evaluate the effect of alloy elements on their mechanical properties. To complete welding 25mm-thick EH36 grade steel plate by single pass, 1.2mm diameter and 1.0mm long cut wires has been distributed in the groove before welding, and three different test coupons have been made using C-1.5%Mn, C-1.8%Mn-0.5%Mo, and C-1.4%Mn-1.7%Ni cut wires to investigate the influence of nickel(Ni) and molybdenum(Mo) on the mechanical properties of welds. Test results showed that the addition of Ni and Mo effectively promotes the formation of Acicular Ferrite(AF), while significantly reducing the amount of Grain Boundary Ferrite(GBF) in weld metal microstructures, which resulted in a beneficial effect on low temperature impact toughness and strength.

  • PDF