• Title/Summary/Keyword: Low temperature refrigeration

Search Result 320, Processing Time 0.026 seconds

Performance Analysis of Refrigeration System Using the CFC-Alternative and Scroll Compressor (CFC-대체냉매와 스크롤압축기를 사용한 냉동시스템 성능해석)

  • Pak, H.Y.;Park, K.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.366-381
    • /
    • 1995
  • A performance analysis of refrigeration system using the HFC-134a and scroll compressor is performed numerically. The refrigeration system mainly consists of various standard components such as heat exchanger, compressor, and expansion device. The model for heat exchanger performance is based on a tube-by-tube method which is analyzed separately by considering the cross-flow heat transfer with the outdoor air flow and pressure drop. Compressor is used the scroll-type compressor which has many merits such as high efficiency, low noise and vibration, and small in size. Short-tube is included as an expansion device. Vapour and liquid line are also considered for the performance analysis of refrigeration system. Using the modeling of various components of refrigeration system, a performance comparison of CFC-12 and HFC-134a is performed numerically for the various outdoor air temperature and various values of short-tube diameter. As the results of this study, the refrigeration system performance decreases as the outdoor air temperature increases. And the optimum short-tube diameter based on COP is 1.37mm for this system.

  • PDF

Heat Transfer and Pressure Drop Characteristics of Secondary Refrigerants Applying to Indirect Refrigeration System (간접 냉동 시스템용 2차 냉매의 열전달과 압력강하 특성)

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Jo, Hwan;Yi, Wen-Bin;Jeon, Min-Ju
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.45-50
    • /
    • 2013
  • This paper presents the comparison of heat transfer and pressure drop of various secondary refrigerants (single-phase and two-phase) in the indirect refrigeration system. The main results were summarized as follows: In case of heat transfer, it is useful to use secondary refrigerants in low evaporating temperature region and the heat transfer coefficient of single-phase is larger than two-phase secondary refrigerants. In case of pressure drop, it is useful to use secondary refrigerants in high evaporating temperature region and the pressure drop of two-phase is smaller than single-phase secondary refrigerant. Also, $CO_2$ is the best useful because pressure drop of $CO_2$ among the secondary refrigerants is the smallest.

A Study on the Cold Energy for Liquefied Nitrogen Gas and Cascade Refrigeration System (액화질소 초저온과 이원냉동 초저온 냉열의 비교 실험적 연구)

  • Kim, C.S.;Jang, H.S.;Jeong, H.M;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.56-62
    • /
    • 2007
  • This paper represents the cold energy for liquefied nitrogen gas and cascade refrigerator. In this study, the vaporizer of liquefied nitrogen gas has the fin coil tube type with the dimension of inside diameter of 10mm and outside diameter of 12mm. Also, the total length of vaporizer is 20,000mm. The main experimental parameters are the mean velocity in duct and the supplied flow-rates of liquefied nitrogen gas. For the cascade refrigeration system, the refrigerants are ethane(R 170) in the high pressure stage and R 22 in the low pressure stage.

  • PDF

Experimental Study on the Rapid Cooling System by Refrigerant Storage Method (냉매 저장방식에 의한 쾌속 냉각장치에 대한 실험적 연구)

  • 장기태;고준석;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.937-942
    • /
    • 2003
  • In the present study, low-temperature low-pressure refrigerant storage method is proposed to achieve higher cooling capacity during a short period of time than that of a compressor in steady operation. Experimental apparatus was designed and set up to analyze the performance of the new-conceptual cooling system. Two reservoirs for sequential storage of refrigerant were used in the cooling system. Several on/off solenoid valves were installed for control of refrigerant flow. From the experimental results, the initial rapid cooling by low temperature low-pressure refrigerant storage method was ascertained for successful operation. This rapid cooling methodology shall be useful for other low-capacity refrigeration system.

Thermodynamic Design of J-T Neon Refrigeration System Utilizing Modified Roebuck Compression Device (변형 Roebuck 압축기를 이용한 J-T 네온 냉각시스템의 열역학적 설계)

  • 정제헌;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.432-438
    • /
    • 2003
  • This paper describes a modified Roebuck compression device as a potential compression device of a rotating cryogenic refrigeration system in superconducting machine such as generator or motor. The conventional cryogen transfer method from stationary refrigeration system to rotating system can be eliminated by an on-board cryogenic refrigeration system that utilizes well-designed multi-stage modified Roebuck compression device. This paper shows basic thermodynamic analysis of modified Roebuck compression device and its application for compressing neon at 77 K with substantial pressure ratio when the rotor diameter is 0.8 m with rotating speed of 3600 rpm. The device does not require any moving part in rotating frame, but two separate thermal reservoirs to convert thermal energy into mechanical compression work. The high temperature thermal reservoir is atmospheric environment at 300 K and the low temperature thermal reservoir is assumed as a liquid nitrogen bath at 77 K. The concept of the compression device in this paper demonstrates its usefulness of generating high-pressure neon at 77 K for rotating J-T neon refrigeration cycle of superconducting rotor.

Cooling Performance Characteristics of 3RT Heat Pump System applied Electronic Expansion Valve (전자식 팽창밸브를 적용한 3RT급 히트펌프 시스템의 냉방 성능 특성)

  • Son, Chang-Hyo;Yoon, Jung-In;Choi, Kwang-Hwan;Ha, Soo-Jung;Jeon, Min-Ju;Park, Sung-Hyeon;Lee, Sang-Bong
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.79-85
    • /
    • 2017
  • A heat pump system is a highly efficient, eco-friendly device which consumes a small amount of energy and supply a lot of energy for heat formation. In addition, it is a single device system that has low generation effect about carbon dioxide. There are many researches related to the electronic expansion valve and the heat pump, but the detailed data analysis of each influence is insufficient. In this study, the cooling capacity and COP of the heat pump system were investigated by varying frequency of the inverter connected to compressor, inlet temperature of chilled water into evaporator and inlet temperature of cooling water into condenser. The results are as follows : (1) The cooling capacity increased as the inverter frequency, inlet temperature of chilled water into evaporator increased, and inlet temperature of cooling water into condenser decreased. (2) The COP increased as the frequency of inverter, inlet temperature of cooling water into condenser decreased and the inlet temperature of chilled water into evaporator increased.

A Numerical Analysis of a Revised VX Absorption Cooling Cycle (Revised VX흡수식 냉동사이클의수치 해석)

  • 장원영;정은수;김병주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.505-513
    • /
    • 2001
  • A revised VX cycle using ammonia/water as the working fluid is a cycle which is suitable to produce cooling utilizing low temperature hat sources. The cycle was analyzed numerically to investigate the effects of the design and operating conditions on the performance. It was shown that both COP and cooling capacity were significantly influenced by the performance of he rectifier. Insufficient UA of the rectifier reduced both ammonia mass fraction and mass flow rate of the vapor entering the condenser, which produced cooling effect in the evaporator. As the temperature and the mass flow rate of the heat source increased, both COP and exergetic efficiency decreased due to the irreversibilities produced in heat exchangers, but cooling capacity did not vary much. Cooling capacity increased significantly as the coolant temperature decreased, although COP and exergetic efficiency remained nearly constant.

  • PDF

Performance Analysis of a Wet Air-Cycle Refrigeration System (습공기사이클 냉동시스템의 성능해석)

  • Won, Sung Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.11
    • /
    • pp.504-511
    • /
    • 2014
  • The objective of this study is to theoretically analyze the performance of an open wet air-cycle refrigeration system, which nowadays is increasingly generating environmental concern. The temperature and relative humidity of the outside air are selected as the most important parameters. As the temperature and relative humidity of the outside air increase, the pressure ratio of the ACM compressor is determined to be nearly constant, the air temperature at the exit of the system increases, and the amount of condensed water, the cooling capacity, the COP, and the total entropy production rate increase overall. The effects of the effectiveness of the heat exchanger and the efficiency of the turbine on the performance are greater than that of the efficiency of the ACM compressor. Also, the performance of the wet air-cycle refrigeration system with two heat exchangers is enhanced, with a high COP and low total entropy production rate, compared to the system with a single heat exchanger.

Effect of Frost and Defrost on the Operating Characteristics of Refrigeration System (착상과 제상이 냉동장치의 운전특성에 미치는 영향)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.5-10
    • /
    • 2010
  • This study was investigated the effect on operating characteristics of apparatus according to frosting and defrosting to develop of new defrosting equipment. The results showed as following. Frost was almost removed using the defrosting equipment with roll brush type that defrosting is possible under operating condition. Also, the temperature of compressor inlet, evaporator inlet and outlet showed higher value because of heat transfer resistance of cooling pipe frost comparing with defrosting condition. And the compressor work showed 10% lower and COP was presented 24% higher values than defrosting condition. Therefore, defrosting for cooling coil of refrigeration and low temperature storage was effected on operation and performance characteristics of equipment. This highly effects on real refrigeration apparatus which is operated in year-around.