• Title/Summary/Keyword: Low temperature minerals

Search Result 139, Processing Time 0.038 seconds

문경지역 탄산온천수의 지구화학적 및 동위원소적 특성연구

  • 배대석;최현수;고용권;박맹언;정율필
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.87-90
    • /
    • 2000
  • The hydrogeochemical and isotopic studies on deep groundwater in the Munkyeong area, Kyeongbuk province were carried out. $CO_2$-rich groundwater (Ca-HC $O_3$ type) is characterized by low pH (5.8~6.5) and high TDS (up to 2,682 mg/L), while alkali groundwater (Na-HC $O_3$ type) shows a high pH (9.I~10.4) and relatively low TBS (72~116 mg/L). $CO_2$-rich water may have evolved by $CO_2$ added at depth during groundwater circulation. This process leads to the dissolution of surrounding rocks and Ca, Na, Mg, K and HC $O_3$ concentrations are enriched. The low Pc $o_2$ (10$^{-6.4}$atm) of alkali groundwaters seems to result from the dissolution of silicate minerals without a supply of $CO_2$. The $\delta$$^{18}$ O and $\delta$D values and tritium data indicate that two types of deep groundwater were both derived from pre-thermonuclear meteoric water. The carbon Isotope data show that dissolved carbon in the $CO_2$-rich water was possibly derived from deep-seated $CO_2$ gas. The $\delta$$^{18}$ S values of dissolved sulfate show that sulfate reduction occurred at great depths. The application of various chemical geothermometers on $CO_2$-rich groundwater shows that the calculated deep reservoir temperature is about 130~175$^{\circ}C$. Based on the geological setting, water chemistry and environmental isotope data, each of the two types of deep groundwater represent distinct hydrologic and hydrogeochemical evolution at depth and their movement is controlled by the local fracture system.m.

  • PDF

Cationic Dye (Methylene Blue) Removal from Aqueous Solution by Montmorillonite

  • Fil, Baybars Ali;Ozmetin, Cengiz;Korkmaz, Mustafa
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3184-3190
    • /
    • 2012
  • Color impurity in industrial effluents pose a significant risk to human health and the environment, so much effort has been expended to degrade them using various methods, including the use of clay minerals as adsorbent. The purpose of this study was to advance understanding of the mechanisms for the removal of methylene blue (MB) from aqueous solutions onto montmorillonite as an adsorbent. Preliminary experiments showed that montmorillonite was effective for this purpose and adsorption equilibrium could be reached in about 24 h. Adsorption capacity of the clay decreased with increase in temperature and ionic strength, and increased with in pH. The fitness of equilibrium data to common isotherm equations such as the Langmuir, Freundlich, Elovich, Temkin and Dubinin-Radushkevich were tested. The Langmuir equation fitted to equilibrium data better than all tested isotherm models. Thermodynamic activation parameters such as ${\Delta}G^0$, ${\Delta}S^0$ and ${\Delta}H^0$ were also calculated and results were evaluated. As result montmorillonite clay was found as effective low cost adsorbent for removal of cationic dyes from waste waters.

Development of the stable liquid formulation of Burkholderia cepacia YC5025, a biocontrol agent for cucumber anthracnose

  • Chung, Eu-Jeen;Chung, Young-Ryun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.97.2-98
    • /
    • 2003
  • A new and effective formulation using antagonistic bacteria, Burkholderia cepacia YC5025 in vegetable oil was developed for the biocontrol of anthracnose. The bacterial population in the formulation was maintained to 5x10/sup7/ cfu/ml upto 60 days at room temperature. Control efficacy of the formulation for anthracnose was over 80% by spraying of diluted suspension(x1,000) in growth chamber tests. On the contrary, the bacterial suspension in distilled water or bacterial culture broth containing same number of spores as the formulation had low control efficacy around 40% even 2-weeks storage after preparation. The shelf-life of the formulation was longer than that of bacterial preparation using clay minerals such as talc or bentonite. The mechanisms of newly developed bacterial formulation are possibly the formation of water film on the surface of cucumber leaves and inactivation of the bacteria in the vegetable oils during storage. Further field tests and improvements with new liquid bacteiral formulation need to be done for practical application.

  • PDF

Halloysite Formation by the Alteration of Trachytic Glass in Ulleung Island (울릉도 조면암질 유리의 변절에 의한 할로이사이트의 생성)

  • Jeong, Gi-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.111-118
    • /
    • 2011
  • Hydrated halloysite was formed by the low temperature alteration of trachytic tuff in onion-like spherical or curly platy forms. The Si content was higher than that of ideal kaolin minerals, indicating the possible presence of amorphous materials. The high Fe content is responsible for the platy morphology of halloysite. The leached ions precipitated as halloysite filling the interparticle pores, while trachytic glass was replaced by Si-rich amorphous materials in an hemispherical form, which was further evolved into spherical halloysite. Halloysite is one of the major alteration products of the volcanic ash in Ulleung Island underwent intense trachytic volcanism.

Gold-Silver Mineralization of the Au-Ag Deposits at Yeongdong District, Chung-cheongbuk-Do (충청북도(忠淸北道) 영동지역(永同地域) 금은광상(金銀鑛床)의 금은광화작용(金銀鑛化作用)에 관한 연구(硏究))

  • Choi, Seon Gyu;Chi, Se Jung;Park, Sung Won
    • Economic and Environmental Geology
    • /
    • v.21 no.4
    • /
    • pp.367-380
    • /
    • 1988
  • Most of the gold (-silver) vein deposits at Yeongdong District are mainly distributed in the precambrian metamorphic rocks. Based on the Ag/Au total production and ore grade ratios, the chemical composition of electrum and the associated sulfides, the gold(-silver) deposits at Yeongdong District may be classified into 4 classes: pyrrhotite - type gold deposits( I), pyrite - type gold deposits (IT A; massive vein), pyrite - type gold deposits (II B; nonmassive vein) and argentite - type gold - silver deposits(III). The chemical study on electrum(including native gold) revealed that Au content (2.8 to 92.4 atomic%) of electrums varies very widely for different classes of deposits. The Au content of electrum associated with pyrrhotite (Class I), ranging from 47.1 to 92.4 atomic% Au, is clearly higher than that associated with pyrite (Classes IIA, IIB and III). In contrast, classes I, II, and III deposits do not show clear differences in Au content of electrum. In general, pyrrhotite - type gold deposits(I) are characterized by features such as simply massive vein morphology, low values in the Ag/Au total production and ore grade ratios, the absence or rarity of silver - bearing minerals except electrum, and distinctively simple mineralogy. Although the geological and mineralogical features and vein morphology of pyrite - type gold deposits(IIA)are very similar to those of pyrrhotite - type gold deposits (I), Class II A deposits reveal significant differences in the associated iron sulfide (i. e. pyrite) with electrum and Au content of electrum. The Ag/Au total production and ore grade ratios from Class II A deposits are relatively slightly higher than those from Class I deposits. Pyrite - type gold deposits(II B) and argentite - type gold - silver deposits (III) have many common features; complex vein morphology, medium to high values in the Ag/Au total production and ore grade ratios and the associated iron sulfide (i. e. pyrite). In contrast to Class II B deposits, Class III deposits have significantly high Ag/Au total production and ore grade ratios. It indicates distinct difference in the abundance of silver minerals (i. e. native silver and argentite). The fluid inclusion analyses and mineralogical data of electrum tarnish method indicate that the gold mineralization of Classes I and II A deposits was deposited at temperatures between $230^{\circ}$ and $370^{\circ}C$, whereas the gold (-silver) mineralization of Classes ITB and ill formed from the temperature range of $150^{\circ}-290^{\circ}C$. Therefore, Classes I and IT A deposits have been formed at higher temperature condition and/or deeper positions than Classes IIB and III.

  • PDF

Materials Analysis of Furnace Wall Excavated from Songdu-ri Site in Jincheon, Chungbuk (충북 진천 송두리 유적 출토 노벽의 재료과학적 분석)

  • Jang, Won Jin;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.36 no.5
    • /
    • pp.421-429
    • /
    • 2020
  • This study examined the manufacturing process of a furnace wall excavated from the Songdu-ri Site in Jincheon, and the difference in material composition between the 11 layers of the wall using physicochemical analyses. Based on microstructure observations, these layers could be largely divided into three groups: an undercalcined first layer, calcined second to ninth layer with evidences of partial heat, and non-fired soil layers from the tenth to the eleventh layer. Particle size analyses revealed that the fired layer constituted a relatively higher content of coarse sand than the non-fired layer. This difference was further confirmed by the results of the curvature coefficient analysis. An analysis of the constituent minerals showed similar overall XRD diffraction patterns between the different layers, but variations in the intensity of the low-temperature and high-temperature minerals. This indicates that the degree of heat was different. The thermal analysis results demonstrated that the heating peak of mullite was only reached in the first and second layers of the wall, thus implying these as the layers to be finally used. Consequently, no significant difference could be observed between the materials of the various layers of the wall. Thus, it can be suggested that the furnace wall was constructed using clay, which had a composition similar to that of the soil present in the area. However, the shape and characteristics of the constituent particles between the layers displayed partial variations, and it is possible that some external materials might have been added.

Effect of Environmental Conditions and Chemical Treatments on Seed Germination of Astilbe koreana (Kom.) Nakai (자생 숙은노루오줌의 종자발아에 미치는 환경조건과 화학적 처리의 영향)

  • Jang, Bo Kook;Cho, Ju Sung;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.29 no.2
    • /
    • pp.235-240
    • /
    • 2016
  • Factors affecting germination of seeds in the forms of various environment and chemical compounds. The present study was aim to produced effective seed propagation method of Astilbe koreana (Kom.) Nakai which had expected high value for the cut flower, ornamental and pharmaceutical material. Seed width and length ranged 0.62, 2.22 ㎜, respectively, and weight of thousand seeds was 40.5 ㎎. As result of imbibition test, showed moisture content of fresh seed (2.57%) increased rapidly by water-soaking treatment under 24 hours, recording to maximum value of 29.8%, and expansion of the seed coat was observed. Seed germination was the best at 15℃ and light conditions (40.8%) among temperature and light conditions treated. Percent germination of seeds was improved under the low (15, 20℃) than high temperature (25, 30℃). In addition, the seed was not germinated at dark condition regardless of temperature. Seeds of A. koreana thus seemed that it had low temperature germinability conditions. To improve germination rate, seeds were submerged in various concentrations of growth regulators such as GA3 and kinetin, and minerals as KNO3 and KCl. As a results, KNO3 treatment, regardless of concentrations, promoted germination compared to control. Especially, percent of germination (77.8%), germination energy (96.1%), mean germination time (11.3 days) and T50 (6.5 days) were effectively improved by treatment of KNO3 20 mM.

Metallic Mineralogical Characteristics of Forged Iron Axe from the Wood-framed Tomb at the Hwangseongdong, Gyeongju, Korea (경주 황성동 목곽묘 출토 단조 철부의 금속광물학적 특성)

  • Kim, Jeong-Hun;Yi, Ki-Wook;Lee, Chan-Hee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.231-245
    • /
    • 2007
  • The forged iron axe of the middle 3rd Century found in the No. 2 wood-framed tomb from the Hwangseongdong site, Gyeongju is rectangular on the plane level. The iron axe shines in met-allic luster, which is light grey with pale creamy tint. The result of X-ray diffraction analysis shows that the axe consists of magnetite and geothite, which can explain why the composition and texture of the original ore has been kept intact. There are fine-grained quartz, calcite, mica, magnetite, amphibole, unknown tungsten minerals, pyroxene and olivine inside the axe. Those must be the impurities that they failed to remove in the thermal treatment process. Generally, the iron axe consists mainly of pearlite texture coexisting ferrite and cementite, and show high carbon contents with homogeneous distribution. It can be interpreted the axe was carburized after the material was made to resemble pure iron. The decarbonization work didn't go well along the process marks. Crude ores of the iron axe are possible utilized by magnetite from the Ulsan mine on the basis of the occurrences and inclusions. It's estimated that the original ore was bloom produced in low-temperature reduction and formed around in $727^{\circ}C$, which is eutetic temperature.

Algal Growth Inhibition Activity of Domestic Plants and Minerals Using Simple Extraction Method (국내산 광물 및 식물의 단순 추출물을 이용한 조류 성장 억제능 평가)

  • Kim, Baik-Ho;Lee, Ju-Hwan;Kim, Kun-Hee;Yu, Young-Hun;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.221-231
    • /
    • 2010
  • A simple extraction method was applied to control four selected cyanobacteria, solitary (SMA) and colonial Microcystis aeruginosa (CMA), and green algae, Scenedesmus quadricauda and Chlorella vulgaris using a domestic plant and mineral. Three kinds of concentrations (1, 5, and 10 mg $L^{-1}$) of three fresh plants Camellia sinensis, Quercus acutissima, and Castanea crenata, three minerals loess, quartz porphyry, and natural zeolite, and plant-mineral composite, totally seven materials were prepared with the simple extraction processes: drying and grinding of material, water-extraction by high temperature-sonication and filtering. Cyanobacteria SMA and CMA (over 60% of control) were effectively inhibited with the low concentration (1 mg $L^{-1}$) of plants Q. acutissima and C. crenata and natural zeolite, while green alga S. quadricauda (below 50% of control) also retarded in growth. Low concentrations (1 mg $L^{-1}$) of C. sinensis effectively increased the growth of C. vulgaris, while loess also induced the algal growth of S. quadricauda. Therefore, our results indicate that crude extract of domestic plants, Q. acutissima and C. crenata can be also useful to control the cyanobacterial bloom in eutrophic lake, whereas C. sinensis and loess may be a good growth factor or useful media for the algal mass culture.

Petrological and Mineralogical Characteristics and Firing Temperature of Pottery in the 5-6th Century from Changnyeong, Gyeongsangnamdo (경상남도 창녕에서 출토된 5-6세기 토기의 암석광물학적 특성 연구 및 소성온도 추정)

  • Woo, Hyeon Dong;Kim, Ok Soon;Jang, Yun Deuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.63-72
    • /
    • 2014
  • This study is conducted to investigate mineralogical characteristics and estimate firing temperature and condition of earthenwares in the 5-6th Century which are found at ancient tombs in Gyo-dong, Gyo-ri, Changnyeong-eup, Changnyeong-gun, Gyeongsangnam-do, TKorea by applying petrological methods. For this study, mineralogical analysis, microtexture observation and chemical analysis were conducted. According to observations using a polarization microscope, the potshreds are mainly composed of quartz and feldspar and consist of some felsic volcanics, tempers, opaques and mullite, hematite and spinel were found under XRD and FTIR analysis. The flow pastes are observed in many potshreds, and it indicate that this textures made by the mixing process or the pottery made from the mixture of 2 sorts of clays at least. They dose not show the features of the potshreds firing under temperature of $1,200-1,300^{\circ}C$ rather than the earthenware firing under relatively low temperature of $1,000^{\circ}C$ approximately because of the existence of a number of pores and the crystals of the specific minerals. The growths mostly of mullite on the surface and into the cracks of the potshreds indicate that the firing condition was not uniform to make even temperature and oxidation. Most of the pottery shreds have felsic volcanic fragments and some of them have cristobalite which is formed at the temperature of more than 1,470^{\circ}C$. But considering the estimated firing temperature, these are not formed during firing but included in the original clay.