• Title/Summary/Keyword: Low temperature heat sources

Search Result 78, Processing Time 0.024 seconds

A Study on the Design Standard of Museum Display Lighting in Consideration of the Damage by Optical Rediant Energy from Light Sources (광방사 에너지에 의한 손상을 고려한 박물관 전시조명 설계기준 설정에 관한 연구)

  • 김홍범;권세혁
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 1994
  • Exhibitlon lighting design be done after due consideration of the photochemical reaction and heating effcts upon exposure to light In this study the balanced judgement is as follows. 'The most light-susceptible material should be illustrated less than 5O(lx](illumlnance-hours per year: 120,OOOlx.h)and the illuminance of moderately sensitive material is 200(lx] (illuminance hours per year: 480,OOOlx.h). Moreover to minimize damage the sources of light should not only contribute as little as heat possible but remove ultraviolt radiation by filters. Also the sources of light must have good color rendering and low color temperature.

  • PDF

Reliability Testing and Materials Evaluation of Si Sub-Mount based LED Package (실리콘 서브 마운틴 기반의 LED 패키지 재료평가 및 신뢰성 시험)

  • Kim, Young-Pil;Ko, Seok-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.1-10
    • /
    • 2015
  • The light emitting diodes(LED) package of new structure is proposed to promote the reliability and lifespan by maximize heat dissipation occurred on the chip. We designed and fabricated the LED packages mixing the advantages of chip on board(COB) based on conventional metal printed circuit board(PCB) and the merits of Si sub-mount using base as a substrate. The proposed LED package samples were selected for the superior efficiency of the material through the sealant properties, chip characteristics, and phosphor properties evaluations. Reliability test was conducted the thermal shock test and flux rate according to the usage time at room temperature, high-temperature operation, high-temperature operation, high-temperature storage, low-temperature storage, high-temperature and high-humidity storage. Reliability test result, the average flux rate was maintained at 97.04% for each items. Thus, the Si sub-mount based LED package is expected to be applicable to high power down-light type LED light sources.

Thermal Transient Characteristics of Die Attach in High Power LED Package

  • Kim Hyun-Ho;Choi Sang-Hyun;Shin Sang-Hyun;Lee Young-Gi;Choi Seok-Moon;Oh Yong-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.331-338
    • /
    • 2005
  • The rapid advances in high power light sources and arrays as encountered in incandescent lamps have induced dramatic increases in die heat flux and power consumption at all levels of high power LED packaging. The lifetime of such devices and device arrays is determined by their temperature and thermal transients controlled by the powering and cooling, because they are usually operated under rough environmental conditions. The reliability of packaged electronics strongly depends on the die attach quality, because any void or a small delamination may cause instant temperature increase in the die, leading sooner or later to failure in the operation. Die attach materials have a key role in the thermal management of high power LED packages by providing the low thermal resistance between the heat generating LED chips and the heat dissipating heat slug. In this paper, thermal transient characteristics of die attach in high power LED package have been studied based on the thermal transient analysis using the evaluation of the structure function of the heat flow path. With high power LED packages fabricated by die attach materials such as Ag paste, solder paste and Au/Sn eutectic bonding, we have demonstrated characteristics such as cross-section analysis, shear test and visual inspection after shear test of die attach and how to detect die attach failures and to measure thermal resistance values of die attach in high power LED package. From the structure function oi the thermal transient characteristics, we could know the result that die attach quality of Au/Sn eutectic bonding presented the thermal resistance of about 3.5K/W. It was much better than those of Ag paste and solder paste presented the thermal resistance of about 11.5${\~}$14.2K/W and 4.4${\~}$4.6K/W, respectively.

  • PDF

Development of Small-scale Organic Rankine Cycle System and Study on its Operating Characteristics (소형 유기랭킨사이클 시스템 개발 및 작동특성에 관한 연구)

  • Yun, Eunkoo;Kim, Hyun Dong;Yoon, Sang Youl;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.919-926
    • /
    • 2013
  • Experiments were conducted to determine the operating characteristics of a small-scale ORC (organic Rankine cycle) system for various low-temperature heat sources. A small-scale ORC power generation system adopting R-245fa as a working fluid was designed and manufactured. Hot water was used as the heat source, and the temperature was controlled using 110-kW electric resistance heaters that provided temperatures of up to $150^{\circ}C$. An open-drive oil-free scroll expander directly connected to a synchronous generator was installed in the ORC unit. Experiments were conducted by varying the rotational speed of the expander under the same heat source temperature conditions. The factors that influence the performance of the small-scale ORC system were analyzed and discussed.

An Analysis of the Patents for Heat Pumps (열펌프의 정량적 특허기술 분석에 관한 연구)

  • Choi Jong Min;Kim Yongchan;Cheon Deokwoo;Shin Yun-Hee;Lee Sang Hyuk;Kwak Jae Su
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.808-815
    • /
    • 2005
  • A technical analysis was conducted to predict the development trends for heat pump system. This study was based on submitted patents from 1983 to 2002 in Korea, USA, and Japan. The total number of raw data from the registered database was 19,261 and the obtained data to be analyzed through the filtering process was 5,143. Japan's technical development for the heat pump system was more dominant than the other countries. Approximately $54\%$ of the total patents related with the heat pump system was registered by Japan. The number of patents for the heat pump system registered by Korea was very low in 1980's, but it increased rapidly in 1990's. As a result, the number of patents applied by Korea was $21\%$ of all patents. When the patent was categorized into compression, absorption/ad-sorption, and chemical type, the technology of compression type made up over $80\%$ in each country. Approximately $93\%$ of the patents surveyed in this study was developed for air or water source heat pumps because of easy applications compared with other heat sources. The $89\%$ of all patents was applied by companies when applicants were divided into three groups of company, individual, and the others (national institute, university, and so on).

Analysis for DME FPSO Storage Tank and Experimental Study on the DME Evaporation Rate by Rolling Motion of Ship (DME FPSO선박의 탱크해석 및 Rolling 유동에 따른 증발 실험연구)

  • Yun, Sangkook;Cho, Wonjun;Baek, Youngsoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1010-1015
    • /
    • 2012
  • DME(Dimethyl ether) is the one of the massive energy sources synthesized from natural gas. KOGAS has already developed the commercial-scale production plant of DME and has been doing to obtain overseas resources to meet the domestic needs. This paper presents the DME storage tank design criteria by stress and strain analysis, and the experimental study on the evaporation phenomena of DME by thermal intake and physical rolling movement of DME FPSO or cargo vessel, because the various moving motions along with heat intake cause the evaporation of low temperature liquid. The experimental result shows that the evaporation rate was increased with larger rolling degree and higher liquid level. The rolling motion leads to evaporate about 20% increase with 15 degree rolling based on the evaporation quantity without rolling.

Analysis of Hydrogen Fuel for Existing Domestic Boilers and New Heat Recovery Boilers with Water Spray (기존 가정용 보일러 및 신형 물분사 폐열회수 보일러에 대한 수소 연료의 평가)

  • LEE, CHANG-EON;KIM, DAEHOON;PARK, TAEJOON;MOON, SEOKSU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.210-222
    • /
    • 2020
  • Hydrogen is evaluated as one of new energy sources that can overcome the limitations and pollution problems of conventional fossil fuels. Although hydrogen is free from CO2, attention is required in NOx emission and flame stability in order to use hydrogen in existing gas fuel system. This study investigates the differences in operating characteristics and its problems to be modified when the hydrogen is used as fuel for existing domestic boilers and new heat recover boilers with water spray. When the hydrogen is used in domestic boilers, the efficiency is about 6-7% lower than methane due to higher partial vapor pressure in the exhaust gas at usual operating conditions above 60℃ in combustion chamber outlet temperature. On the other hand, the heat recovery boiler with water spray (HR-B/WS-X) is expected to achieve up to 95% efficiency, which is 12% more efficient than conventional boilers. It can also significantly reduce NOx emission by lowering the flame temperature.

Vulnerability of Pinus densiflora to forest fire based on ignition characteristics

  • Seo, Hyung-Soo;Choung, Yeon-Sook
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.343-349
    • /
    • 2010
  • In Korea, man-caused forest fires are known originate primarily in coniferous forests. We have hypothesized that the vulnerability of Pinus densiflora forests is principally a consequence of the ignition characteristics of the species. To assess this hypothesis, we conducted two combustion experiments using fallen leaves with a reference species, Quercus variabilis. In the first experiments, in which a cigarette was employed as a primary heat source for the initiation of a forest fire, the Pinus leaves caught fire significantly faster (1'1" at Pinus, 1'31" at Quercus, P < 0.001), and ignition proceeded normally. Quercus leaves, on the other hand, caught fire but did not ignite successfully. In the second set of experiments utilizing different moisture contents and fuel loads, the maximum flame temperature of the Pinus leaves was significantly higher ($421^{\circ}C$ at Pinus, $361^{\circ}C$ at Quercus, P < 0.001) and the combustion persisted for longer than in the Quercus leaves (8'8" at Pinus, 3'38" at Quercus, P < 0.001). The moisture contents of the leaves appeared to be a more important factor in the maximum temperature achieved, whereas the most important factor in burning time was the amount of fuel. Overall, these results support the assumption that Pinus leaves can be ignited even by low-heat sources such as cigarettes. Additionally, once ignited, Pinus leaves burn at a relatively high flame temperature and burn for a prolonged period, thus raising the possibility of frequent fire occurrences and spread into crown fires in forests of P. densiflora.

An Improvement of the Control Characteristics of Induction Motors using Adaptive Flux Observers (적응자속 업저버를 이용한 유도전동기의 제어특성 개선에 관한 연구)

  • 윤병도;박현호;김찬기
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.4
    • /
    • pp.46-54
    • /
    • 1994
  • Exhbitlon hghting design be done aftrr due consideration of the photochermcal reaction and h ~ ~ i i tc~.fficits~ upn exposure to light. In this study the balanced judgement is as follows. The most light-susceptible material shouid be illu~stratrui less than 50[k] (illurnlnance-hours per year : 120, 000k.h)and the illuminance of moderately sensitive rriatcrinl k 200[1x] (illuminance hours per year : 480, 0001x.h). Moreover to minimize damage the sources of light shoulcl not only contribute as little as heat possible but remove ultraviolt radiation by filters. Also the sources of light must have good color rendering and low color temperature.

  • PDF

Combustion Characteristics of High Moisture Indonesia Coal as a Pulverized Fuel at Thermal Power Plant (미분탄 화력발전소 연료로서 고수분 인도네시아탄의 연소특성)

  • Kim, Jae-Kwan;Lee, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.3
    • /
    • pp.16-23
    • /
    • 2009
  • It is strongly desired for coal-fired power plants to utilize not only low-rank coals with high moisture contents, but also lowering cost with diversifying fuel sources. In this study, combustion characteristics of low rank coal with high moisture, and standard pulverized coals are experimentally investigated using TGA (Thermogravimetric Analysis) and DTF (drop tube furnace). The coals tested are three kinds of coal with moisture content ranging from 8.32 to 26.82%. The results show that under the air combustion condition, the burn-out time at TGA rises as moisture content increases, and standard pulverized coal with 8.32% moisture content showed the lowest activation energy of 55.73 kJ/mol. In case of the high amount of moisture, the combustion efficiency decreases due to evaporation heat loss, and unburned carbon in ash produced at combustion process in DTF increased. Aslo, initial deformation temperature of slag attached in alumina tube of DTF decreased with lowering the crytallinity of anorthite and augite. To improve the combustion reactivity and efficiency, it is effective to upgrade through drying the high moisture coal to moisture level (less than 10%) of standard pulverized coal.

  • PDF