• Title/Summary/Keyword: Low temperature burning

Search Result 63, Processing Time 0.036 seconds

Crossover Temperature and Ignition Delay Time of Diluted Hydrogen-Air Mixtures (희석된 수소-공기 혼합기의 크로스오버 온도와 점화지연시간)

  • Dong Youl, Lee;Eui Ju, Lee
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.18-24
    • /
    • 2022
  • Hydrogen is a clean fuel and is used in many applications in power systems such as fuel cells. It has unique properties such as wide flammability, high burning velocity, and difficulty to liquefy, which lead to critical safety issues. Fire and explosion are the most frequently occurring accidents and one of the major reasons is autoignition. In the ignition process, the chemistry of hydrogen combustion depends mainly on radical pools, and the temperature at which chain-branching and terminating rates are equal is called the crossover temperature. This study addresses the homogeneous autoignition of diluted hydrogen-air mixtures to investigate the effects of dilution on the crossover temperature to prevent explosions in the future. The new criterion for crossover temperature is introduced by only hydrogen radicals to adjust more simply. The detailed calculations indicate that the crossover temperatures are low at high dilutions of carbon dioxide and nitrogen because the concentrations of active radicals are reduced when an inert gas is added. This result is expected to contribute to hydrogen safety and realize a hydrogen society in the future.

Low Temperature Plasma Treatment of Linseed Oil for Immobilization of Silica as Flame-resistant Material (방염용 실리카의 고정화를 위한 아마인유의 저온플라즈마처리)

  • Seo, Eun-Deock
    • Textile Coloration and Finishing
    • /
    • v.24 no.4
    • /
    • pp.313-320
    • /
    • 2012
  • For the preparation of hardened films which can be applied as a binder for flame-resistant materials such as silica, linseed oil was subjected to a low temperature plasma treatment with argon, or oxygen gas. The film was produced much faster than so-called drying of oil in air. The SEM analysis for silica particles embedded in the hardened film after plasma treatment showed that the silica particles were immobilized on substrate and were evenly dispersed. The FT-IR spectral analysis for the plasma-treated linseed oil films demonstrated that the radicals which were formed during the plasma treatments caused the linseed oil to be cross-linked, and the plasmas attacked carbon chains of the oil randomly without focusing on specific vulnerable bonds such carbon double and carbonyl bonds intensively unless exposure times of the plasmas were prolonged too much, while the cross-linking of the air-dried film was considered to occur at the well-known typical sites, i.e., carbon-carbon double bond and ${\alpha}$-methylene carbon. Burning times, as a measure of flame/fire resistance, of silica-filled cellulose substrates, increased with increasing contents of silica.

A Study on the Combustion Optimization of a Common Rail Direct Injection Diesel Engine for Regeneration of the Diesel Particulate Filter (매연여과장치 재생을 위한 커먼레일 디젤엔진의 연소 최적화에 관한 연구)

  • Kang Jung Whun;Kim Man Young;Youn Gum Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.167-173
    • /
    • 2005
  • Thermal regeneration means burning-off and cleaning-up the particulate matters piled up in DPF(diesel particulate filter), and it requires both high temperature $(550\~600^{\circ}C)$ and appropriate concentration of oxygen at DPF entrance. However, it is not easy to satisfy such conditions because of the low temperature window of the HSDI(high speed direct injection) diesel engine(approximately $200\~350^{\circ}C$ at cycle). Therefore, this study is focused on the method to raise temperature using the trade-off relation between temperature, oxygen concentration, and the influence of many parameters of common rail injection system including post injection. After performing an optimal mapping of the common rail parameters for regeneration mode, the actual cleaning process during regeneration mode is investigated and evaluated the availability of the regeneration mode mapping through regenerating soot trapped in the DPF.

Study on the Enzyme Activity in Leaf-Burning Disease of Panax ginseng C.A. Meyer (인삼엽요병에서 효소활성도의 변화)

  • 양덕조;김명원
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.92-97
    • /
    • 1989
  • This study investigated the effects of high light intensity (100 KLw) and high temperature (45 ℃, dark) on enzyme (glucose-6-phosphate dehydrogenase, acid phosphatase, catalase, peroxidase, and proteinase) activities and characteristics of Panax ginseng C.A. Meyer leaves. Enzyme activity and protein content decreased rapidly under treatment with high light intensity In P ginseng the thermal stabilities of catalase and peroxidase were high (above 70%), and the coagulation rates of soluble proteins were low (below 17%). Therefore, the decrease in enzyme activity and protein content was not caused by increase in leaf temperature due to the high light intensity, but by increase in proteolytic activities. The photochemical formation rate of superoxide radical (O-2) was higher in the P ginseng leaf extracts than in Solanum nigmm, and was accelerated by addition of crude saponin to the buffer extracts.

  • PDF

Study of Radio Frequency Thawing for Cylindrical Pork Sirloin

  • Kim, Jinse;Park, Jong Woo;Park, Seokho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Han, Gui Jeung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.108-115
    • /
    • 2016
  • Purpose: Radio frequency (RF) heating is a promising thawing method, but it frequently causes undesirable problems such as non-uniform heating. This can occur because of the food shape, component distribution, and initial temperature differences between food parts. In this study, RF heating was applied to the thawing of cylindrically shaped pork sirloin by changing the shape of electrodes and the surrounding temperature. Methods: Curved electrodes were utilized to increase the thawing uniformity of cylindrically shaped frozen meat. Pork sirloin in the shape of a half-circle column was frozen in a deep freezer at $-70^{\circ}C$ and then thawed by RF heating with flat and curved electrodes. In order to prevent fast defrosting of the food surface by heat transfer from air to the food, the temperature of the thawing chamber was varied by -5, -10, and $-20^{\circ}C$. The temperature values of the frozen pork sirloin during RF thawing were measured using fiber-optic thermo sensors. Results: After multiple applications of curved electrodes resembling the food shape, and a cooled chamber at $-20^{\circ}C$ the half-cylindrically shaped meat was thawed without surface burning, and the temperature values of each point were similarly increased. However, with the parallel electrode, the frozen meat was partially burned by RF heating and the temperature values of center were overheated. The uniform heating rate and heat transfer prevention from air to the food were crucial factors for RF thawing. In this study, these crucial factors were accomplished by using a curved electrode and lowering the chamber temperature. Conclusions: The curved shape of the electrode and the equipotential surface calculated from the modeling of the parallel capacitor showed the effect of uniform heating of cylindrically shaped frozen food. Moreover, the low chamber temperature was effective on the prevention of the surface burning during RF thawing.

An Experimental Study on Slagging/Fouling Characteristics for Various Coals in a 50kWth Pulverized Coal Combustion System (50kWth미분탄 연소 시스템에서 탄종별 슬래깅 및 파울링 특성 연구)

  • Kang, Kieseop;Lee, Jaewook;Chae, Taeyoung;Ryu, Changkook;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.107-109
    • /
    • 2012
  • In Korean coal power plants, rising coal prices have recently led to the rapid utilization of low lank coals such as sub-bituminous coal with low calorific values and low ash fusion temperatures. Using these coals beyond the design range has resulted in important issues including slagging and fouling, which cause negative effects in boiler performances and unstable operations. The purpose of this study is to observe slagging and fouling characteristics resulted from burning various ranks of pulverized coals. We have tested 3 different coals: FLAME(bituminous), KCH(sub-bituminous) and MOOLARBEN(bituminous)coals in the pilot system $50kW_{th}$ scale. A stainless steel tube with preheated air inside was installed in the downstream in order to simulate water wall. Collected ash on the probe and the slag inside the furnace near burner were analyzed by SEM (scanning electron microscopy) to verify the formation degree, surface features and color changes of the pasty ash particles. Induced coupled plasma and energy dispersive X-ray spectroscopy were also performed to figure out the chemical characteristics of collected samples. As a result, KCH was observed that more slag was developed inside the walls of the furnace and on the probe than the other two kinds of coals, as shown in the calculate slagging and fouling indices as well.

  • PDF

Temperature Dependence on the Partial Discharge of Epoxy Molding Ignition Coil According to Applied Voltage (에폭시 성형 점화코일의 인가전압에 따른 부분 방전 온도 의존성)

  • Shin, Jong-Yeol;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • A gasoline engine automobile uses high voltage generation of the ignition coil, igniting and burning mixed fuel in the combustion chamber, which drives the engine. When the electronic control unit intermits a current supplied to the power transistor, counter electromotive force with a low voltage is generated by self induction action in the ignition primary coil and a high voltage is induced by mutual induction action with the primary ignition coil in the second ignition coil. The high voltage is supplied to the ignition plug in the combustion chamber, causing a spark, igniting the compressed mixed fuel. If a very small defect occurs inside the insulating material when a voltage is applied in said ignition coil, the performance of the insulation material will get worse and breakdown by a partial discharge of corona discharge. Thus, in this experiment, we are to contribute to improve the performance and ensure the reliability of the ignition coil by investigating partial discharge characteristics according to the change of voltage and temperature when a voltage is applied to the specimen of the epoxy molding ignition coil.

Analysis on the Combustion Characteristics of Low-Btu Synthetic Gases in Gas Engine (저발열량 합성가스의 가스엔진 내 연소 특성에 대한 해석)

  • Lee, Chan;Cho, Sang Mok
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.78-86
    • /
    • 2006
  • Computational analyses are conducted on the combustion characteristics of the coal- and the biomass-derived synthetic gases with low-Btu heating value in gas engine. Using thermochemical analyses on the synthetic gases, combustion pressure, temperature, exhaust gas composition, NO emission and engine power are predicted and the predicted results are compared with small-scale pilot engine test results. In order to investigate the unsteady combustion phenomena in gas engine combustion chamber, CFD analyses are carried out on the coal and the biomass synthetic gases and their computed results are compared to provide the guidelines for the design modification and the tuning of the gas engine burning the synthetic gases as alternative fuels.

  • PDF

A Three-Dimensional Numerical Model for the Investing of Combustion Characteristics and Optimization of Operating Performances in Municipal Waste Incinerator (도시 폐기물 소각로의 연소특성 및 운전성능 최적화를 위한 3차원 수치모델링)

  • 전영남;정오진;송형운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • In this study, a 3-dimensional numerical model, has been developed applied for the investigation of combustion characteristics, and used to optimize operating conditions in MSW incinerator, in Gwangju. The model developed in this study has been verified by exacting both the predicted and the measured temperature in combustion chamber which has been operated to provide a reference condition. By predictive results, the Sangmoo incinerator has a good characteristics of combustion and low emission however after burning zone produced incomplete products, also probably because the supply of primary air was not enough. Parametric screening studies have been conducted to study optimal operating conditions. For the optimal combustion characteristics, operating conditions should be adjusted with the waste properties.

4-stroke 디젤엔진의 성능예측에 관한 연구

  • 오태식;오세종;양재신
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.58-68
    • /
    • 1982
  • It is well known to diesel engineers that the heat release pattern is one of the most important factors affecting engine performance. Thorough research in heat release pattern has materially helped the progress in high-speed diesel engine development . This paper is based on the research conducted at KAIST and Daewoo Heavy Industry last year. The purpose of this paper is to determine the heat release pattern in combustion chamber of MAN M type, the famous low-noise engine. Thermodynamic cycle simulation was performed using Whitehous-Way's heat release pattern with modified coefficients and Annand's heat transfer model. Instantaneous temperature and pressure of gas in cylinder could be determined by the numerical solution of simultaneous equation of mass conservation, equation of energy conservation, and state equation of ideal gas. Calculated results were compared with measured values in some details emphasizing upon the factors affecting rate of heat release. The agreement was fairly good and revealed why M type should have lower burning velocity at the early part of combustion in spite of high injection rate. Additional results by parametric studies were given in relation to fuel injection conditions for further application to engine development.

  • PDF