• Title/Summary/Keyword: Low swirl

Search Result 156, Processing Time 0.031 seconds

Swirl ratio effects on tornado vortices in relation to the Fujita scale

  • Hangan, H.;Kim, J.D.
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.291-302
    • /
    • 2008
  • Three-dimensional engineering simulations of momentum-driven tornado-like vortices are conducted to investigate the flow dynamics dependency on swirl ratio and the possible relation with real tornado Fujita scales. Numerical results are benchmarked against the laboratory experimental results of Baker (1981) for a fixed swirl ratio: S = 0.28. The simulations are then extended for higher swirl ratios up to S = 2 and the variation of the velocity and pressure flow fields are observed. The flow evolves from the formation of a laminar vortex at low swirl ratio to turbulent vortex breakdown, followed by the vortex touch down at higher swirls. The high swirl ratios results are further matched with full scale data from the Spencer, South Dakota F4 tornado of May 30, 1998 (Sarkar, et al. 2005) and approximate velocity and length scales are determined.

Disk MHD Accelerator with Swirl Vane and Its Performance

  • Takeshita, Shinji;Furuya, Seizo;Harada, Nobuhiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.536-542
    • /
    • 2008
  • The rocket technology has the best reliability and the high acceleration performance currently. In addition, next generation propulsion system is acquired to low cost and high payload percentage at that same time. This work is to improve the performance of Diskshaped MHD accelerator which is expected as the one of the solution. In this study we have been focusing on the swirl vane. It is so important to know that how the swirl vane contribute the plasma and its performance. As results, the gas velocities of r-component with inlet swirl were increased about over 3000m/s at the channel exit. And then static gas pressure were also reduced, we found that the case with inlet swirl gives the good influence to the acceleration performance. And the difference of the acceleration by positive and negative inlet swirl is that gas velocity of $\theta$-component may operate to the electric field.

  • PDF

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part I: Experimental Study on Geometric Optimization) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part I: 형상 최적화를 위한 실험적 연구))

  • Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.199-200
    • /
    • 2012
  • An experimental study on geometric optimization was conducted to develop a hybrid/dual swirl jet combustor for a micro-gas turbine. A hybrid concept indicating a combination of swirling jet partially premixed and premixed flames were adopted to achieve high flame stability as well as clean combustion. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with a constant fuel flow rate for each nozzle. The results showed that the variation in location of pilot nozzle resulted in significant change in swirl intensity due to the change in flow area near burner exit, and thus, optimized nozzle location was determined on the basis of CO and NOx emissions under conditions of co-swirl flow and swirl $angle=30^{\circ}$. The increase in swirl angle (from $30^{\circ}$ to $45^{\circ}$) enhanced the emission performances, in particular, with a significant reduction of CO emission near lean-flammability limit. It was observed that the CO emission near lean-flammability limit was further reduced through the counter-swirl flow. However, there was not significant change in the NOx emission in the operating conditions (i.e. equivalence ratio of 0.6~0.7) between the co- and the counter-swirl flow.

  • PDF

Diesel Engine Intake Port Analysis Using Reverse-engineering Technique (리버스 엔지니어링을 통한 디젤엔진 흡기포트의 성능 비교)

  • Kim, Chang-Su;Park, Sung-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this paper, we built a three-dimensional model by applying reverse engineering techniques on targeting the intake port of 2900cc class diesel engine before that three-dimensional design technique is applied. The performance of the intake port is predicted and analysed using the computational flow analysis. Flow Coefficient and Swirl Ratio have been analyzed for two intake port models. One is the intake port for the diesel engine with plunger-type fuel system, and the other is for the diesel engine with CRDI fuel system. Computational result shows that the Flow Coefficient of the intake port with CRDI fuel system is increased upto 10 percentage compared with that with plunger-type. Also, the intake port with plunger-type has high Swirl Ratio at high valve lift, and the intake port with CRDI fuel system has high Swirl Ratio at relatively low valve lift. It is believed that because of high performance of the fuel injector, the intake port with CRDI fuel system is designed for more air amount and not much swirl flow at high valve lift. However, high swirl flow is required at low valve lift for initial fuel and air mixing. The result of this study may be useful for the re-manufacturing industry of automotive parts.

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part II: Numerical Analysis on Isothermal Flow Structure) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part II: 비반응 유동구조에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Hae-Joo;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.201-202
    • /
    • 2012
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine were numerically investigated. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with constant fuel flow rates for each nozzle. As a result, the variation in location of pilot nozzle resulted in significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus flame stability and emission characteristics might be significantly changed. The swirl angle of $45^{\circ}$ provided similar recirculating flow patterns in a wide range of equivalence ratio (0.5~1.0). Compared to the co-swirl flow, the counter-swirl flow leaded to the reduction in CTRZ and fuel-air mixing near the burner exit and a weak interaction between the pilot partially premixed flame and the lean premixed flame. With the comparison of experimental results, it was confirmed that the case of co-swirl flow and swirl $angle=45^{\circ}$ would provided an optimized combustor performance in terms of flame stability and pollutant emissions.

  • PDF

Exhaust and Combustion Characteristics of Premixed Swirl Burner for Steam Reforming System (선회류 예혼합버너를 적용한 개질기용 연소시스템의 배기 및 연소특성)

  • Cha, Chun Loon;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.34-43
    • /
    • 2014
  • The reformer system is a method for hydrogen production from hydrocarbon fuels such as natural gas under high temperature environment($about{\sim}1,000^{\circ}C$). The premixed swirl burner with mixing swirler and combustion swirler designed to deliver fuel cell electric output from 0.5 kW to 1.5 kW. Premixed swirl burner experiments using natural gas and mixture of natural gas and anode off gas were carried out to analyse flame patterns and stability by equivalence ratio respectively. The results show that the stable swirl flame can be established for all cases of fuels type using the premixed swirl burner. The swirl flame had a wide stability region and it showed very low CO(50 ppm) and $NO_x$(20 ppm) emission at different fuel type and various equivalence ratio conditions. The operating range of premixed swirl burner for stable swirl flame is found to exist between equivalence ratio of 0.70 to 0.90 for turn down ratio of 3:1.

Numerical Study on the Stabilization of Turbulent Swirling Lifted Premixed Syngas Flames (석탄가스 난류선회유동 예혼합부상화염의 안정성 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.349-352
    • /
    • 2008
  • This study has numerically modeled the combustion processes of the turbulent swirling premixed lifted syngas flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role of stabilizing the turbulent lifted flames. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Numerical results indicate clearly that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling premixed lifted flames in the low-swirl burner. Computations are made for the wide range of the syngas chemical composition and the dilution level at two pressure conditions (1.0, 5.0 bar). Numerical results indicate that the lifted height in the LSB is increased by decreasing the H2 percentage and increasing the dilution level at the given equivalence ratio. It is also found that the flashback is occurred for the hydrogen composition higher than 80% at the equivalence ratio, 0.8. However, at the syngas composition range in the IGCC system, the stable lean-premixed lifted flames are formed at the low-swirl burner.

  • PDF

The Effects of Various Swirl Flows on Pulverized Petroleum Coke Combustion (미분 석유코크스연소기에서 스월강도변화가 연소과정에 미치는 영향)

  • Cha, Chun Loon;Lee, Ho Yeon;Hwang, Sang Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.297-299
    • /
    • 2014
  • Petroleum coke has high heating value and low price. Due to the steadily increasing demand for heavy oil processing, the production volume of petroleum coke tends to be expanded. The high availability and low price of petroleum coke have been strongly considered as candidate fuel for power generation facilities. However the high carbon content, high sulfur content and nitrogen content of petroleum fuel are known to produce relatively large quantity of CO2, high NOx and SO2 emission. In this work, a series of numerical simulations have been carried out in order to investigate the effects of swirl flow intensity on combustion furnace, which is most important operating condition. Results show that the temperature distribution was spatially uniform at about 1600K but high temperature region are located quite differently depending on swirl number. In addition, numerical temperature data was compared with experimental temperature data and its temperature difference shows less than 10%. On the other hand, discrepancy between numerical and experimental emission data were slightly large with necessities of improved emission model.

  • PDF

An Experimental study on swirl flow and combustion characteristics of 3 staged low NOx burner applied with FGR and FIR (FGR 및 FIR을 적용한 3단 저 NOx 버너의 Swirl유동 및 연소특성에 관한 실험적 연구)

  • Shin, Myung-Chul;Kim, Se-Won;Cha, Hak-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.105-112
    • /
    • 2002
  • The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, air staged commercial propane flame configuration are studied. For this triple air staged combustor, the angular momentum weighted by it's swirl number and air distribution ratio was observed to be the critical criteria. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must he transferred from the flame via radiation to the chamber heat transfer surfaces, such that when the second air is introduced, peak flame temperatures are suppressed. It is experimentally found out that the total NOx emission level in this type of burner is lower than 0.75g/kg.

  • PDF

NOx and CO Emission Characteristics of Premixed Oxidizer-staging Combustor using a Cyclone Flow (싸이클론 유동을 이용한 예혼합 다단연소기의 NOx 및 CO 배출특성)

  • Kim, Jong-Hyun;Lee, Hyun-Yong;Hwang, Cheol-Hong;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.7-13
    • /
    • 2008
  • The aim of this work is to identify application of ultra low NOx and CO combustor. To achieve this, we developed the premixed oxidizer-staging combustor using a cyclone flow. Various factors such as equivalence ratio for the combustion condition and swirl type for secondary air injection have been tested experimentally for flame stability and NOx, CO emission characteristics. Before to do this, we had been tested cyclone premixed combustor in advance. it is similar to first combustor of premixed oxidizer-staging combustor. As a result, cyclone premixed flame shows the very high flame stability and low NOx emission. however, it can be identified that there were some problems such as a little high CO emission and thermal resistance of combustor wall. Cyclone premixed oxidizer-staging combustor can resolve those of problems. In our combustor, we can found out optimal condition that the secondary air injection method is swirl type, swirl direction is co-swirl and equivalence ratio of first combustor is 1.3. Quantitatively, we can achieve 10.8 ppm for NOx and 30.2 ppm for CO emissions respectively. Form this result, we can identified that cyclone premixed oxidizer-staging combustor can apply to ultra low NOx and CO combustor.

  • PDF