• Title/Summary/Keyword: Low speed shear test

Search Result 35, Processing Time 0.028 seconds

Shear strength evaluation of RC solid piers of high-speed railway bridges in China

  • Guo, Wei;Fan, Chao;Cui, Yao;Zeng, Chen;Jiang, Lizhong;Yu, Zhiwu
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.413-423
    • /
    • 2021
  • Piers are the main lateral force-resisting members of high-speed railway (HSR) bridges used in China and are characterized by low axial load ratios, low longitudinal reinforcement ratios, low stirrup ratios, and high shear span ratios. It is well known that flexural, flexural-shear, and shear failures of piers may occur during an earthquake. In this study, a new shear strength model was developed to simulate the seismic failure of HSR solid piers accurately. First, low cyclic-loading test data of solid piers obtained in recent years were collected to set up a database for model verification. Second, based on the test database, the applicability of existing shear strength models was evaluated. Finally, a new shear strength model for HSR solid piers with round-ended cross-sections was derived based on the truss model and ultimate equilibrium theory. In comparison with existing models, it was demonstrated that the proposed model could be used to predict the shear strength of HSR piers more accurately.

Standardization of the Important Test Parameters in the Solder Ball Shear Test for Evaluation of the Mechanical Joint Strength

  • Kim J. W.;Koo J. M.;Lee W. B.;Moon W. C.;Moon J. H.;Yeon Y. M.;Shur C. C.;Jung S. B.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.15-28
    • /
    • 2005
  • The ball shear test was investigated in terms of the effects of test parameters, i.e., shear height and shear speed, with an experimental and non-linear finite element analysis for evaluating the solder joint integrity of area array packages. Two representative Pb-free solder compositions were examined in this work: Sn-3.5Ag-0.75Cu and In-48Sn. The substrate was a common SMD type with solder bond pad openings of 460 $\mu$m in diameter. The microstructural investigations were carried out using SEM, and the IMCs were identified with EDS. Shear tests were conducted with the two varying test parameters. It could be observed that increasing shear height, at fixed shear speed, has the effect of decreasing shear force for both Sn-3.5Ag-0.75Cu and In-48Sn solder joints, while the shear force increased with increasing shear speed at fixed shear height. Too high shear height could cause some undesirable effects on the test results such as unexpected high standard deviation values or shear tip sliding from the solder ball. The low shear height conditions were favorable for screening the type of brittle interfacial fractures or the degraded layers in the interfaces. The shear speed conditions were discussed with the stress analyses of the solder ball, and we cannot find any conspicuous finding which is related to optimum shear speed from the stress analyses.

  • PDF

Regulation in Shear Test Method for BGA of Flip-chip Packages (플립칩 패키지 BGA의 전단강도 시험법 표준화)

  • Ahn, Jee-Hyuk;Kim, Kwang-Seok;Lee, Young-Chul;Kim, Yong-Il;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • We reported the methodology for the shear test which is one of the evaluation procedure for mechanical reliability of flip-chip package. The shear speed and the tip height are found to be two significant experimental parameters in the shear test. We investigated how these two parameters have an influence on the results, the shear strength and failure mode. In order to prove these experimental inconsistency, simulation using finite element analysis was also conducted to calculate the shear strength and to figure out the distribution of plastic energy inside of the solder ball. The shear strength decreased while the tip height increased or the shear speed decreased. A variation in shear strength due to inconsistent shear conditions made confusion on analyzing experimental results. As a result, it was strongly needed to standardize the shear test method.

A Study on the Characteristic of Weld Joint and Tensile Fracture of SUS304 and Cu High-Speed Dissimilar Lap Welds by Single Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 SUS304와 Cu의 고속 겹치기 용접에서 접합부 및 인장시험 파단부의 특성에 관한 연구)

  • Lee, Su-Jin;Kim, Jong-Do;Katayama, Seiji
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.56-63
    • /
    • 2014
  • To develop and understand dissimilar metals joining of Stainless steel and Copper, ultra-high speed laser lap welding was studied using single mode fiber laser in this study. SUS304 and Cu have large differences in materials properties, and Cu and Fe have no intermetallic compounds by typical binary phase of Cu and Fe system. In this study, ultra-high speed lap welds of SUS304 and Cu dissimilar metals using single-mode fiber laser was generated, and weldability of the weld fusion zone was evaluated using a tensile shear test. To understand the phenomenon of tensile shear load, weld fusion zone of interface weld area and fracture parts after tensile shear test were observed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis system. And it was confirmed that Cu was easily melting and penetrating in the grain boundaries of SUS304 because of low melting temperature. And high thermal conductivity of copper occurred dissipate heat energy rapidly. These properties cause the solidification cracking in weld zone.

Development of Smart Speed Bump Using Non-newtonian Fluid (비뉴턴 유체를 이용한 스마트 과속방지턱 소재 개발)

  • Jung, Injun;Kim, Eunjung;Yu, Woong-Ryeol;Na, Wonjin
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 2022
  • In this study, a smart material applicable to speed bumps was developed using low-cost starch and waterbased suspensions, and their properties were investigated. Viscosity and shear stress according to the shear rate was measured by a rheometer to observe shear thickening behavior according to starch concentration. The shear thickening phenomenon and applicability to speed bumps were identified macroscopically via drop weight test and bike driving test, measuring the vibration after impact with a driving speed of 5-25 km/h. As a result of the viscosity measurement, shear thickening occurred after the shear thinning region at the beginning, and the critical strain causing the shear thickening phenomenon decreased as the concentration of starch increased. Also, the viscosity and shear stress increased significantly with the increase of the starch concentration. As a result of the drop weight test and the bike driving test, the suspension was changed to a solid-like state in a short time, and the impact energy was absorbed in the fluid. The shear thickening phenomenon easily occurred as the concentration of the fluid and the applied impact (velocity) increased. Therefore, it can be proposed the development of a smart speed bump material that operates in the range of 5-25 km/h with a Non-Newtonian fluid based on water and starch.

Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

  • Erdemir, Ugur;Sancakli, Hande Sar;Sancakli, Erkan;Eren, Meltem Mert;Ozel, Sevda;Yucel, Taner;Yildiz, Esra
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.434-443
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS. A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of $6mm{\times}4mm$ and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with $30{\mu}m$ silica oxide particles ($Cojet^{TM}$ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at ${\alpha}=.05$. RESULTS. Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION. Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used.

A Study on the Wear Mechanism of the Alumina Ceramics for the Wear of STB2 (베어링 강(STB2)의 마멸에 미치는 알루미나 세라믹스의 마멸기구)

  • Nam, Joon-Woo;Jun, Tae-Ok;Jin, Dong-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.62-72
    • /
    • 1995
  • The present study was undertaken to investigate the dry wear mechanism of the alumina ceramics in the purity variation for the wear of STB2. The wear test was carried out under different experimental condition various sliding speed, contact pressure and sliding distance. According as the alumina purity increased, wear volume of the STB2 decreased and minimum value of wear volume was over to high speed side. According as the sliding speed and sliding distance increased, friction coefficient decreased owing to drop of the shear strength, it decresed largely owing to decreased of elastic modulus and thermal conductivity with decrease in alumina purity. Indicative of minimum, value of wear volume, low speed side was abrasive wear, high speed side was wear of heat softening. The friction surface of ceramics protacted by oxide was transfer from STB2.

  • PDF

Effect of dentin surface roughness on the shear bond strength of resin bonded restorations

  • Koodaryan, Roodabeh;Hafezeqoran, Ali;Poursoltan, Sajjad
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.224-228
    • /
    • 2016
  • PURPOSE. This study aimed to investigate whether dentin surface preparation with diamond rotary instruments of different grit sizes affects the shear bond strength of resin-bonded restorations. MATERIALS AND METHODS. The buccal enamel of 60 maxillary central incisors was removed with a low speed diamond saw and wet ground with silicon carbide papers. The polished surfaces of the teeth were prepared with four groups of rotary diamond burs with super-coarse (SC), coarse (C), medium (M), and fine (F) grit sizes. Following surface preparation, 60 restorations were casted with nickel-chromium alloy and bonded with Panavia cement. To assess the shear bond strength, the samples were mounted on a universal testing machine and an axial load was applied along the cement-restoration interface at the crosshead speed of 0.5 mm/min. The acquired data was analyzed with one way ANOVA and Tukey post hoc test (${\alpha}=.05$). RESULTS. The $mean{\pm}SD$ shear bond strengths (in MPa) of the study groups were $17.75{\pm}1.41$ for SC, $13.82{\pm}1.13$ for C, $10.40{\pm}1.45$ for M, and $7.13{\pm}1.18$ for F. Statistical analysis revealed the significant difference among the study groups such that the value for group SC was significantly higher than that for group F (P<.001). CONCLUSION. Dentin surface roughness created by diamond burs of different grit sizes considerably influences the shear bond strength of resin bonded restorations.

Characteristics of the Powder Type Ag System Insert Metals Made by Ball Milling Method and Brazed Joints (볼 밀링법으로 제조된 브레이징 삽입금속 및 접합 특성)

  • 김광수;이규도;황선효
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • Powder type Ag system insert metals were manufactured by ball milling process. The variables of milling process such as milling media, revolution speed and powder/ball weight ratio were constant except the milling time. The milling times were selected for 24, 48 and 72 hours. The insert metals made by milling process were evaluated by performing scanning electron microscope, x-ray and DSC(differential scanning calorimetry) analysis, and further in terms of wettability test. The selected insert metals that have the good characteristics compared to commercial insert metals were applied to make the brazed joints of the steel/steel and the steel/WC superhard particles. The characterizations of those brazed joints were also conducted by microstructural observations, shear tensile tests and microhardness measurements. The results indicated that milling time of 48 hours for making powder type insert metals was the best condition showing the small amount of oxides residue, low wetting angle and stable microstructure. The brazed joints that applied the 48 hours milled insert metal were very sound condition indicating the shear tensile value of $2.29{\times}102$ MPa and the microhardness of 138VHN. Further, the amount of the porosity was appeared to be lower than that of the commercial insert metals.

A Study on Reliability Assessment of Ag-free Solder (무은 솔더의 신뢰성 평가에 관한 연구)

  • Kim, Jong-Min;Kim, Gi-Young;Kim, Kang-Dong;Kim, Seon-Jin;Jang, Joong Soon
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.109-116
    • /
    • 2013
  • The solder is any of various fusible alloys, usually tin and lead, used to join metallic parts that provide the contact between the chip package and the printed circuit board. Solder plays an important role of electrical signals to communicate between the two components. In this study, two kinds of Ag-free solder as sample is made to conduct the thermal shock test and the high humidity temperature test. Low resistance is measured to estimate crack size of solder, using daisy chain. The low speed shear test is also performed to analyze strength of solder. The appropriate degradation model is estimated using the result data. Depending on the composition of solder, lifetime estimation is conducted by adopted degradation model. The lifetime estimated two kinds of Ag-free solder is compared with expected lifetime of Sn-Ag-Cu solder. The result is that both Ag-free composition are more reliable than Sn-Ag-Cu solder.