• Title/Summary/Keyword: Low speed maneuvering equation

Search Result 3, Processing Time 0.013 seconds

A Numerical Study on the Effects of Maneuverability of Ship with Low Forward Speed by Increasing Rudder Force (타력 증대가 저속 운항 선박의 조종성능에 미치는 영향에 관한 수치적 연구)

  • Kim, Hyun-Jun;Kim, Sang-Hyun;Kim, Dong-Young;Kim, In-Tae;Han, Ji-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.217-227
    • /
    • 2016
  • Recent accidents of crude oil tankers have resulted in sinking, grounding of vessels and significant levels of marine pollution. Therefore, International Maritime Organization (IMO) has been strengthening the regulations of ship maneuvering performance in MSC 137. The evaluation of maneuvering performance can be made at the early design stage; it can be investigated numerically or experimentally. The main objective of this paper was to investigate the maneuvering performance of a VLCC due to the increase of rudder force at an early design stage for low speed in shallow water conditions. It was simulated in various operating condition such as deep sea, shallow water, design speed and low speed by using the numerical maneuvering simulation model, developed using MMG maneuvering motion equation and KVLCC 2 (SIMMAN 2008 workshop). The effect of increasing the rudder force can be evaluated by using numerical simulation of turning test and ZIG-ZAG test. The research showed that, increasing the rudder force of a VLCC was more effective on improving the turning ability than improving the course changing ability especially. The improvement of turning ability by the rudder force increasing is most effective when the ship is sailing in shallow water at low forward speed.

Mathematical Model for the Hydrodynamic Forces in Forward or Backward Low Speed Maneuvering (저속(低速) 전.후진(前.後進) 조종(操縱)에 의한 동유체력(動流體力)의 수학(數學)모델)

  • Jin-Ahn Kim;Seung-Keon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.45-52
    • /
    • 1992
  • The Mathematical Model, which can describe the maneuvering motion of a ship in low speed, is highly required these days because it is directly related to the safety of ship in confused harbour. Kose has presented a new model for the low speed maneuvering motion, but the usefulness of it is not confirmed widely. Lets of difficulties are revealed in the case of low speed maneuver, The first is the fact that a ship moves the stirred water region for the longer time than in the case of high speed. So, the hydrodynamic forces, exerted on the hull need to be treated strictly, not by the ordinary differential equation with constant coefficients. Another difficulty is arised from the fact the lateral motion is relatively large comparing to the longitudinal motion in low speed. And, by the result the effect of cross-flow drag or vortex sheding effects are dominant. Besides, the captive model tests of low speed motion has lots of problems. For example, the hydrodynamic forces do not converge to a certain values for the long time. And the absolute values of measured forces are very small, so we must expend lots of efforts to raise up the S/N ratio of the experiments. In this paper, a new mathematical model for the maneuvering motion in low speed, is built up, and the usefulness is discussed, comparing with other models, for example, Kose's model or M.M.G. model or Cross-Flow model, The CMT data for a PCC model of 3.00 M length, released from the RR-742 of Japan, are used for the validation of each models.

  • PDF

Nonlinear Motion Analysis of FPSO and Shuttle Tanker in a Tandem Configuration (탠덤 배치된 FPSO와 셔틀탱커의 비선형 운동 해석)

  • Lim, Choon-Gyu;Lee, Ho-Young;Shin, Hyung-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.560-567
    • /
    • 2006
  • FPSO and shuttle tanker are connected to each other by a mooring hawser and a loading hose through which cargo oil is off-loaded. Even in mild sea-state. environmental loads can cause unstable large drift motions between two vessels in tandem off-loading operations, which may result in collision incidents. Accordingly. the analysis on the relative motion between two vessels due to the environmental loads should be investigated in initial design stage. In this study, the low speed maneuvering equation is employed to simulate nonlinear motions of FPSO and shuttle tanker. Low frequency wave drift forces including hydrodynamic interactions between two vessels are evaluated by near field approaches. Current loads are determined by mathematical model of MMG and wind loads are calculated by employing the wind spectrum according to the guidelines of API-RP2A. Mooring forces produced by turret mooring lines and a flexible hawser are modeled quasi-statically by catenary equations. The effect of environmental loads that affect nonlinear motion is investigated through variation in their magnitudes and the nonlinear motions between FPSO and shuttle tanker are simulated under wave, current and wind in time domain.