• 제목/요약/키워드: Low resistance

검색결과 4,948건 처리시간 0.041초

에폭시 나노컴퍼지트 체적 고유저항의 온도 의존성 (Temperature Dependence of Volume Resistivity on Epoxy Nano-composites)

  • 김창훈;이영상;강용길;박희두;신종열;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제24권10호
    • /
    • pp.834-838
    • /
    • 2011
  • This research shows the electrical characteristic using excellent epoxy nano-composite of MgO 5.0 wt% and $SiO_2$ 0.4 wt% in mechanical strength test depending on nano-additive. First of all, volume resistance depending on nano-additive and temperature using high resistance meter (HP. 4329A) by increasing 10, 100, 1,000 V of applying voltage was measured. Moreover, temperature range of $25{\sim}120^{\circ}C$ with virgin sample was tested using TO-9B oven by Ando Company. The result showed that virgin and the samples added with MgO and $SiO_2$ had similar value of volume resistance in low temperature and low electric field region and reduced with slow slope. The nano-composite's volume resistance of sample added with MgO and $SiO_2$ had higher value than virgin sample's volume resistance in high temperature region more than $80^{\circ}C$. Moreover, the slope has steeply reduced. The volume resistance of sample added with MgO 5.0 wt% was $8.38{\times}10^{13}\;{\Omega}{\cdot}cm$ and it was 6.8 times more than virgin sample in high temperature at $120^{\circ}C$. The insulation characteristics were constant although filler has changed in low temperature region. But, in high temperature region, the value of volume resistance of sample with MgO 5.0 wt% was 7.6 times more than the virgin sample's volume resistance.

AISI316L 강에 저온 플라즈마침탄 및 DLC 복합 코팅처리 시 처리온도에 따른 표면특성평가 (Influence of Treatment Temperature on Surface Characteristics during Low Temperature Plasma Carburizing and DLC duplex treatment of AISI316L Stainless Steel)

  • 이인섭
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.60-65
    • /
    • 2011
  • A low temperature plasma carburizing process was performed on AISI 316L austenitic stainless steel to achieve an enhancement of the surface hardness without degradation of its corrosion resistance. Attempts were made to investigate the influence of the processing temperatures on the surface hardened layer during low temperature plasma carburizing in order to obtain the optimum processing conditions. The expanded austenite (${\gamma}_c$) phase, which contains a high saturation of carbon (S phase), was formed on all of the treated surfaces. Precipitates of chromium carbides were detected in the hardened layer (C-enriched layer) only for the specimen treated at $550^{\circ}C$. The hardened layer thickness of ${\gamma}_c$ increased up to about $65{\mu}m$ with increasing treatment temperature. The surface hardness reached about 900 $HK_{0.05}$, which is about 4 times higher than that of the untreated sample (250 $HK_{0.05}$). A minor loss in corrosion resistance was observed for the specimens treated at temperatures of $300^{\circ}C{\sim}450^{\circ}C$ compared with untreated austenitic stainless steel. In particular, the precipitation of chromium carbides at $550^{\circ}C$ led to a significant decrease in the corrosion resistance. A diamond-like carbon (DLC) film coating was applied to improve the wear and friction properties of the S phase layer. The DLC film showed a low and stable friction coefficient value of about 0.1 compared with that of the carburized surface (about 0.45). The hardness and corrosion resistance of the S phase layer were further improved by the application of such a DLC film.

Low-cost Contact formation of High-Efficiency Crystalline Silicon Solar Cells by Plating

  • 김동섭;이은주;김정;이수홍
    • 신재생에너지
    • /
    • 제1권1호
    • /
    • pp.37-43
    • /
    • 2005
  • High-efficiency silicon solar cells have potential applications on mobile electronics and electrical vehicles. The fabrication processes of the high efficiency cells necessitate com placated fabrication precesses and expensive materials. Ti/Pd/Ag metal contact has been used only for limited area In spite of good stability and low contact resistance because of Its expensive material cost and precesses. Screen printed contact formed by Ag paste causes a low fill factor and a high shading loss of commercial solar cells because of high contact resistance and a low aspect ratio. Low cost Ni/Cu metal contact has been formed by using a low cost electroless and electroplating. Nickel silicide formation at the interface enhances stability and reduces the contact resistance resulting In an energy conversion efficiency of $20.2\%\;on\;0.50{\Omega}cm$ FZ wafer. Tapered contact structure has been applied to large area solar cells with $6.7\times6.7cm^2$ in order to reduce power losses by the front contact The tapered front metal contact Is easily formed by the electroplating technique producing $45cm^2$ solar cells with an efficiency of $21.4\%$ on $21.4\%\;on\;2{\Omega}cm$ FZ wafer.

  • PDF

내식성 및 표면경도 향상을 위한 AISI 304L 스테인리스강의 저온 플라즈마질화 프로세스 (Low Temperature Plasma Nitriding Process of AISI 304L Austenitic Stainless Steels for Improving Surface Hardness and Corrosion Resistance)

  • 이인섭
    • 대한금속재료학회지
    • /
    • 제47권10호
    • /
    • pp.629-634
    • /
    • 2009
  • The effects of processing parameters on the surface properties of the hardened layers processed by the low temperature plasma nitrocarburizing and the low temperature two-step plama treatment (carburizing+nitriding) were investigated. The nitrogen-enriched expanded austenite structure (${\gamma}_N$) or S phase was formed on all of the treated surface. The surface hardness reached up to 1200 $HV_{0.025}$, which is about 5 times higher than that of untreated sample (250 $HV_{0.1}$). The thickness of hardened layer of the low temperature plasma nitrocarburized layer treated at $400^{\circ}C$ for 40 hour was only $15{\mu}m$, while the layer thicknesss in the two-step plama treatment for the 30 hour treatment increased up to about $30{\mu}m$. The surface thickness and hardness increased with increasing treatment temperature and time. In addition, the corrosion resistance was enhanced than untreated samples due to a high concentration of N on the surface. However, higher treatment temperature and longer treatment time resulted in the formation of $Cr_2N$ precipitates, which causes the degradation of corrosion resistance.

부당경량아. 크기만 작은가? (Consequences of being born small for gestational age : More than being small)

  • 유은경
    • Clinical and Experimental Pediatrics
    • /
    • 제52권2호
    • /
    • pp.152-158
    • /
    • 2009
  • Reduced fetal growth is independently associated with increased risk of health problems in later life, particularly type 2 diabetes and cardiovascular diseases. Insulin resistance appears to be a key component underlying these metabolic complications. It is suggested that detrimental fetal environment may program insulin resistance syndrome. An insulin-resistant genotype may also result in both low birth weight and insulin resistance syndrome, and it is likely that the association of low birth weight with insulin resistance is the result of both genetic and environmental factors. Early postnatal rapid catch-up growth is closely related to risk for subsequent metabolic diseases. Fat mass is strikingly reduced in neonates born small for gestational age (SGA), and recent data suggest that insulin resistance seen in catch-up growth is related to the disproportionate catch-up in fat mass compared with lean mass. Endocrine disturbances are also recognized in SGA children, but overt clinical problems are infrequent in childhood. Cognitive impairment is reported in some children born SGA, especially those who do not show catch-up growth, in whom early neurodevelopmental evaluation is required. Breast feeding, also known to be protective against the long-term risk of obesity, may prevent some intellectual impairment in SGA children. Calorie-dense feeding does not seem to be appropriate in SGA infants. We must balance the positive effect of nutrition on neural development against rapid fat deposition and the future risk of insulin resistance.

Modeling and Experimental Verification of ANN Based Online Stator Resistance Estimation in DTC-IM Drive

  • Reza, C.M.F.S.;Islam, Didarul;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.550-558
    • /
    • 2014
  • Direct Torque controlled induction motor (DTC-IM) drives use stator resistance of the motor for stator flux estimation. So, stator resistance estimation properly is very important for a stable and effective operation of the induction motor. Stator resistance variations because of changing in temperature make DTC operation difficult mainly at low speed. A method based on artificial neural network (ANN) to estimate the stator resistance online of IM for DTC drive is modeled and verified in this paper. To train the neural network a back propagation algorithm is used. Weight adjustment of neural network is done by back propagating the error signal between measured and estimated stator current. An extensive simulation has been carried out in MATLAB/SIMULINK to prove the efficacy of the proposed stator resistance estimator. The simulation & experimental result reveals that proposed method is able to obtain precise torque and flux control at low speed.

Effect of Molecular Weight of Epoxidized Liquid Isoprene Rubber as a Processing aid on the Vulcanizate Structure of Silica Filled NR Compounds

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.223-233
    • /
    • 2021
  • In this study, epoxidized liquid isoprene rubber (E-LqIR) was used as a processing aid in a silica-filled natural rubber compound to improve the fuel efficiency, abrasion resistance, and oil migration problems of truck and bus radial tire tread. The wear resistance, fuel efficiency, and extraction resistance of the compound were evaluated according to the molecular weight of E-LqIR. Results of the evaluation showed that the E-LqIR compound had a lower chemical crosslink density than that of a treated distillate aromatic extract (TDAE) oil compound because of the sulfur consumption of E-LqIR. However, the filler-rubber interaction improved because of the reaction of E-LqIR with silica and crosslink with the base rubber by sulfur. As the molecular weight of E-LqIR increased, crosslink with sulfur was facilitated, and the filler-rubber interaction improved, resulting in improved abrasion resistance. The fuel efficiency performance of the E-LqIR compound was poorer than that of the TDAE oil compound because of the low chemical crosslink density and hysteresis loss at the free chain end of E-LqIR. However, the fuel efficiency performance improved as the molecular weight of E-LqIR increased.

상대재 내식성이 철강재료의 미끄럼마모 특성에 미치는 영향 (Effects of Corrosion Resistance Characteristics of Opponent Materials in relative Motion on Sliding Wear Behavior of Mild Carbon Steel)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.139-147
    • /
    • 2019
  • This study investigates the effects of corrosion resistance characteristics of opponent materials in relative motion on the sliding wear behavior of mild carbon steel. Pin specimens made of mild carbon steel are tested at several sliding speeds against mating discs made of two types of alloyed steels, such as type D2 tool steel (STD11) and type 420 stainless steel (STS420J2), with different corrosion resistance characteristics in a pin-on-disc type sliding wear test machine. The results clearly show that the sliding wear behavior of mild carbon steel is influenced by the corrosion resistance characteristics of the mating disc materials at low sliding speeds. However, the sliding wear behavior at high sliding speeds is irrelevant to the characteristics because of the rising temperature. During the steady state wear period, the sliding wear rate of mild carbon steel against the type 420 stainless steel at a sliding speed of 0.5 m/s increases considerably unlike against the type D2 tool steel. This may be because the better corrosion resistance characteristics achieve a worse tribochemical reactivity. However, during the running-in wear period at low sliding speeds, the wear behavior of mild carbon steel is influenced by the microstructure after heat treatment of the mating disc materials rather than by their corrosion resistance characteristics.

Does minimally invasive canal preparation provide higher fracture resistance of endodontically treated teeth? A systematic review of in vitro studies

  • Sila Nur Usta;Emmanuel Joao Nogueira Leal Silva;Seda Falakaloglu;Mustafa Gundogar
    • Restorative Dentistry and Endodontics
    • /
    • 제48권4호
    • /
    • pp.34.1-34.12
    • /
    • 2023
  • This systematic review aimed to investigate whether minimally invasive root canal preparation ensures higher fracture resistance compared to conventional root canal preparation in endodontically treated teeth (ETT). A comprehensive search strategy was conducted on the "PubMed, Web of Science, and Scopus" databases, alongside reference and hand searches, with language restrictions applied. Two independent reviews selected pertinent laboratory studies that explored the effect of minimally invasive root canal preparation on fracture resistance, in comparison to larger preparation counterparts. The quality of the studies was assessed, and the risk of bias was categorized as low, moderate, or high. The electronic search yielded a total of 1,767 articles. After applying eligibility criteria, 8 studies were included. Given the low methodological quality of these studies and the large variability of fracture resistance values, the impact of reduced apical size and/or taper on the fracture resistance of the ETT can be considered uncertain. This systematic review could not reveal sufficient evidence regarding the effect of minimally invasive preparation on increasing fracture resistance of ETT, primarily due to the inherent limitations of the studies and the moderate risk of bias.

저강도의 저항운동과 유산소 운동 훈련이 만성 뇌졸중 환자의 혈중지질에 미치는 효과 (The Effects of Low Intensity Resisted and Aerobic Exercise Training on Blood Lipid in Chronic Stroke Patients)

  • 이동엽;조남정
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.753-758
    • /
    • 2011
  • 본 연구는 만성 뇌졸중 환자를 대상으로 저강도의 저항운동과 유산소 운동 훈련을 적용하여 혈액학적 특성인 혈중 지질에 미치는 효과를 알아보고자 하였다. 뇌졸중으로 6개월 이상 장애를 가진 37명의 환자가 연구에 참여하였고, 저강도의 저항운동군 19명과 유산소운동군 18명으로 나뉘었다. 저강도 저항운동군은 저강도의 저항운동 훈련을 이용하여 50분씩 주 5회, 8주간 실시하였다. 운동 전과 후의 혈액학적 특성인 혈중 지질을 측정하여 본 연구의 효과를 비교하였다. 유산소운동군은 순수하게 유산소 운동만을 실시하였다. 통계처리 방법으로 실험 전. 후 차이를 검증하기 위하여 대응표본 t 검정을 실시하였다. 모든 통계적 유의수준은 .05로 하였다. 본 연구의 결과 저강도의 저항운동군은 혈액학적 특성에서 TG, TC HDL-C, LDL-C에서 통계적으로 유의하게 증가하였고(p<.05), 유산소 운동군에서는 TC와 LDL-C만 통계적으로 유의한 차이가 나타났다(p<.05). 향후 만성 뇌졸중 환자에게 흥미를 유발하고 기능회복의 효과를 강화할 수 있는 저강도의 저항운동과 유산소성 운동 훈련을 환자의 시기별, 등급별로 적용 가능한 연구가 필요하다고 생각한다.