• Title/Summary/Keyword: Low resistance

Search Result 4,962, Processing Time 0.035 seconds

Wear Behavior of WC-12%Co/Low Carbon Steel Metal Matrix Composites(MMC) Welding Overlay (WC-12%Co/저탄소강 MMC 용접 오버레이의 마모거동)

  • 임희식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.42-49
    • /
    • 2003
  • The protection of steel surfaces against wear is a practical problem far agricultural, mining and manufacturing industries. Commercial processes are available in which a hard tungsten carbides rich steel layer is formed on the surface of carbon steel digging, drilling and gouging tools to improve their wear resistance. The nature of the interaction of the tungsten carbide with the steel matrix is important in determining the wear and corrosion properties of the resulting metal matrix composites(MMC). In the study, WC-12%Co/low carbon steel MMC overlays have been prepared by gas metal arc welding(GMAW) according to size of WC-12%Co grits. The characteristics wear resistance and wear mechanism have been investigated in relation to the experiment conditions each other. After MMC overlay had been tested by rubber wheel abrasion test, it was known that MMC overlay has a excellent wear resistance. Fe$_{6}$W$_{6}$C carbides of matrix in overlays were not important to restrain rubber wheal abrasion wear. Wear loss is proportioned to a applied load according to time. On the case of low load, wear occurred severely in the matrix of overlay more than WC-12%Co grit, on the contrary it is reverse on the case of high load because of fracture of WC-12%Co grits.its.

Fatigue properties of welded joints for TMCP steels (TMCP 고장력강 용접부의 피로 특성에 관한 연구)

  • 임채범;권영각;엄기원
    • Journal of Welding and Joining
    • /
    • v.8 no.2
    • /
    • pp.40-52
    • /
    • 1990
  • Fatigue behavior of the AH, DH and EH grade TMCP(Thermo-Mechanical Control Process) steels was studied. High cycle and low cycle fatigue tests were carried out for the weldment and base metal of each steel. The results showed that the fatigue limit at 2 * $10^6$ cycles was 33 to 37 kg/$mm^2$ for the base metal and 30 to 34 kg/$mm^2$ for the weldment. The ratio of fatigue limit to tensile strength for TMCP steels was 0.65 to 0.71, which was a value close to the upper limit for the ordinary steels. It was also found that the high cycle fatigue behavior of TMCP steels could be affected by the microstructures of base metal. It will be necessary to have fine structure for TMCP steels to increase the fatigue resistance. In low cycle fatigue test, the fatigue lifetime of AH and DH steels accorded well with the ASME best fit curve, while that of EH steel was considerably lower than the fatigue lifetime of the other steels. Fatigue resistance of the weldment made by high heat input(180kJ/cm) welding was not lower than that made by low heat input(80kJ/cm) welding in case of high cycle fatigue, but the high heat input welding decreased the fatigue resistance in case of low cycle fatigue.

  • PDF

Study of thin film transition liquid crystal display (TFT-LCD) optical waste glass applied in early-high-strength controlled low strength materials

  • Wang, Her-Yung;Chen, Jyun-Sheng
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • The present study verifies compressive strength, ultrasonic pulse velocity, electrical resistance,permeable ratio, and shrinkage from waste glass controlled low strength materials (WGCLSM) and early-high-strength WGCSLM specimens, by replacing the sand with waste glass percentages of 0%, 10%,20%, and 30%. This study reveals that increasing amounts of waste LCD glass incorporated into concrete increases WGCLSM fluidity and reduces the setting time, resulting in good working properties. By increasing the glass to sand replacement ratio, the compressive strength decreases to achieve low-strength effects. Furthermore, the electrical resistance also rises as a result of increasing the glass to sand replacement ratio. Early-high-strength WGCSLM aged 28 days has twice the electrical resistance compared to general WGCSLM. Early-high-strength WGCSLM aged 7 days has a higher ultrasonic pulse velocity similar to WGCSLM aged 28 days. The variation of length with age of different compositions is all within the tolerance range of 0.025%. This study demonstrates that the proper composition ratio of waste LCD glass to sand in early-high-strength WGCSLM can be determined by using different amounts of glass-sand. A mechanism for LCD optical waste glass usage can be established to achieve industrial waste minimization, resource recycling, and economic security.

The effects of stacking sequence on the penetration-resistant behaviors of T800 carbon fiber composite plates under low-velocity impact loading

  • Ahmad, Furqan;Hong, Jung-Wuk;Choi, Heung Soap;Park, Soo-Jin;Park, Myung Kyun
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • Impact damages induced by a low-velocity impact load on carbon fiber reinforced polymer (CFRP) composite plates fabricated with various stacking sequences were studied experimentally. The impact responses of the CFRP composite plates were significantly affected by the laminate stacking sequences. Three types of specimens, specifically quasi-isotropic, unidirectional, and cross-ply, were tested by a constant impact carrying the same impact energy level. An impact load of 3.44 kg, corresponding to 23.62 J, was applied to the center of each plate supported at the boundaries. The unidirectional composite plate showed the worst impact resistance and broke completely into two parts; this was followed by the quasi-isotropic lay-up plate that was perforated by the impact. The cross-ply composite plate exhibited the best resistance to the low-velocity impact load; in this case, the impactor bounced back. Impact parameters such as the peak impact force and absorbed energy were evaluated and compared for the impact resistant characterization of the composites made by different stacking sequences.

Stduy on formation of W-silicide in the diped-phosphorus poly-Si/SiO$_{2}$/Si-substrate (인이 주입된 poly-Si/SiO$_{2}$/Si 기판에서 텅스텐 실리사이드의 형성에 관한연구)

  • 정회환;주병권;오명환;정관수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.126-134
    • /
    • 1996
  • Tungsten silicide films were deposited on the phosphorus-doped poly-Si/SiO$_{2}$/Si-substrates by LPCVD (low pressue chemical vapor deposition). The formation and various properties of tungsten silicide processed by furnace annealing in N$_{2}$ ambient were evaluated by using XRD. AFM, 4-point probe and SEM. And the redistribution of phosphorus atoms has been observed by SIMS. The crystal structure of the as-deposited tungsten silicide films were transformed from the hexagonal to the tetragonal structure upon annealing at 550.deg. C. The surface roughness of tungsten polycide films were found to very smoothly upon annelaing at 850.deg. C and low phosphorus concentration in polysilicon layer. The sheet resistance of tungsten polycide low phosphorus concentration in polysilicon layer. The sheet resistance of tungsten polycide films are measured to be 2.4 .ohm./ㅁafter furnace annealing at 1100.deg. C, 30min. It was found that the sheet resistance of tungsten polycide films upon annealing above 1050.deg. C were independant on the phosphorus concentration of polysilicon layer and furnace annealing times. An out-diffusion of phosphorus impurity through tungsten silicide film after annealing in $O_{2}$ ambient revealed a remarkably low content of dopant by oxide capping.

  • PDF

Study on the Selection of End Mill Shape to Improve Tool Life in End Mill Process of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 가공에서 공구 수명 향상을 위한 엔드밀 형상의 선정에 관한 연구)

  • Kim, Do Hyeog;Jung, Yoon Gyo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.76-82
    • /
    • 2019
  • This study aims to find the shapes of an end-mill with low cutting temperature during the end-mill process of Ti-6Al-4V alloy. Such ${\alpha}-{\beta}$ titanium alloys are increasingly more used for their high tensile strength and high corrosion resistance. The cutting characteristics of Ti-6Al-4V alloy were studied using an analytical method validated by comparing the estimated cutting resistance with that from experiments. The end-mill shape was analyzed using an experimental method. The end-mill shape with low cutting resistance and low cutting temperature was confirmed by analyzing the signal-to-noise ratios for various conditions. Then, the factors with significance factor of 95% or more were determined in the variance analysis. Finally, an end-mill shape that can ensure a low cutting temperature was proposed.

Surface Properties of Chromium Nitrided Carbon Steel as Separator for PEMFC (크롬질화처리한 저탄소강의 고분자 전해질 연료전지 분리판으로서의 표면특성)

  • Choi, Chang-Yong;Kang, Nam-Hyun;Nam, Dae-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.173-178
    • /
    • 2011
  • Separator of stack in polymer electrolyte membrane fuel cell (PEMFC) is high cost and heavy. If we make it low cost and lighter, it will have a great ripple. In this study, low carbon steel is used as base metal of separator because the cost of low carbon steel is very cheaper commercial metal material than stainless steels, which is widely used as separator. Low carbon steel has not a good corrosion resistance. In order to improve the corrosion resistance and electrolytic conductivity, low carbon steel needs to be surface treated. We made Chromium electroplated layer of $5{\mu}m$, $10{\mu}m$ thickness on the surface of low carbon steel and it was nitrided for 2 hours at $1000^{\circ}C$ in a furnace with 100 torr nitrogen gas pressure. Cross-sectional and surface microstructures of surface treated low carbon steel are investigated using SEM. And crystal structures are investigated by XRD. Interfacial contact resistance and corrosion tests were considered to simulate the internal operating conditions of PEMFC stack. The corrosion test was performed in 0.1 N $H_2SO_4$ + 2 ppm $F^-$ solution at $80^{\circ}C$. Throughout this research, we try to know that low carbon steel can be replaced stainless steel in separator of PEMFC.

Optimization of Printing Conditions Using Design Experiments for Minimization of Resistances of Electrodes in Roll-to-roll Gravure Printing Process (롤투롤 그라비어 방식의 인쇄 전극 저항 최소화를 위한 실험계획법 적용 인쇄 공정 조건 최적화)

  • Lee, Sang Yoon;Kim, Cheol;Kim, Chung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.351-356
    • /
    • 2017
  • The resistance of printed patterns for electrodes fabricated using printing technology should be minimized. This parameter depends on the pattern width and thickness; however, from the viewpoint of printability, the printed patterns should be printed at the designed width. The resistance of the printed patterns as well as printability is affected by various printing conditions. In this paper, the printing condition is optimized to minimize the resistance of electrodes printed by the roll-to-roll gravure method. This is done by considering the spread ratio of pattern width as a parameter of printability using design experiments. The drying temperature, dryer fan speed, and printing speed are selected as effective factors for the experiment objective. The optimized conditions are obtained and reproducibility test using these demonstrates that the optimized conditions can produce low-resistance electrodes for printability of the pattern width.

Mithramycin Inhibits Etoposide Resistance in Glucose-deprived HT-29 Human Colon Carcinoma Cells

  • Lee, Eun-Mi;Park, Hae-Ryong;Hwang, Ji-Hwan;Park, Dong-Jin;Chang, Kyu-Seob;Kim, Chang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1856-1861
    • /
    • 2007
  • Physiological cell conditions such as glucose deprivation and hypoxia play roles in the development of drug resistance in solid tumors. These tumor-specific conditions cause decreased expression of DNA topoisomerase $II{\alpha}$, rendering cells resistant to topo II target drugs such as etoposide. Thus, targeting tumor-specific conditions such as a low glucose environment may be a novel strategy in the development of anticancer drugs. On this basis, we established a novel screening program for anticancer agents with preferential cytotoxic activity in cancer cells under glucose-deprived conditions. We recently isolated an active compound, AA-98, from Streptomyces sp. AA030098 that can prevent stress-induced etoposide resistance in vitro. Furthermore, LC-MS and various NMR spectroscopic methods identified AA-98 as mithramycin, which belongs to the aureolic acid group of antitumor compounds. We found that mithramycin prevents the etoposide resistance that is induced by glucose deprivation. The etoposide-chemosensitive action of mithramycin was just dependent on strict low glucose conditions, and resulted in the selective cell death of etoposide-resistant HT-29 human colon cancer cells.

A Study on Chromium Electroplating of Piston Ring Groove's Surface (엔진피스톤링 홈의 크롬도금에 관한 연구)

  • 문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.47-55
    • /
    • 1995
  • When the low heavy oil is using as fuel oil to the diesel engine, some problems such as corrosion resistance, wear resistance and heat resistance are happened in diesel engine's internal material, especially the adhesive wear of piston ring groove was occurred as a important problem. Therefore to prevent adhesive wear of its groove, the surface of its groove used to be electroplated with Chrominum and for its Chromium electroplating, Fe anode is being used until nowadays because of its Special shape. However in case of using Fe anode, there were some problems such as deterioation of solution, property of Chromium film, and condition of coation. In this paper Pb anode electroplated withPb to the steel plate was investigated for its Chromium electroplating for Pb's high corrosion resistance in acid solution, and Pb anode is not dissolved compared with Fe anode and deterioration degree of solution in case of Pb anode is smaller than that of Fe anode and also property of Chromium film was better than that of Fe anode. Moreover it was known that the optimum cathodic current density for Pb electroplating to steel plate as insoluable anode for Chromium coating of piston ring groove is 30mA/$cm^2$ by experimental results obtained.

  • PDF