• 제목/요약/키워드: Low radiation

검색결과 2,573건 처리시간 0.04초

저선량 ${\gamma}$선 조사가 대두 식물체의 방사선 감수성에 미치는 영향 (Effects of Low Dose ${\gamma}$ Radiation on the Radiosensitivity of Soybean(Glycine max L.) Plant)

  • 김재성;채성기;백명화;김동희
    • 한국환경농학회지
    • /
    • 제19권4호
    • /
    • pp.324-327
    • /
    • 2000
  • 저선량 조사한 대두종자의 초기생육과 대두 유식물체의 후속고선량에 대한 방사선 감수성 변화를 알아보고자 저선량 0, 4, 8, 12, 20 Gy를 조사하여 재배한 대두 유식물체에 ${\gamma}$선 50, 100, 200 Gy를 조사한 후 생육상황을 관찰하였다. 저선량 조사에 의해 대두 신규종자의 발아율 증가효과는 없었으나 작물 생장 증대효과는 있었으며 저선량 8 Gy 조사구가 가장 효과적이었다. 대두유식물체의 고선량 방사선에 의한 생육장해는 사전 저선량조사에 의해 크게 감소되었으며 저선량 조사에 의한 고선량 방사선 저항성 증가는 8 Gy와 20 Gy조사에서 가장 효과적이었다.

  • PDF

Design of Low Field RF Coil for Open MRI System by Electric Dipole Radiation

  • 김경락;양형진;오창현
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2001년도 제6차 학술대회 초록집
    • /
    • pp.174-174
    • /
    • 2001
  • Purpose: Dimensions of body RF coil composed of 4 rectangular loops for low field open MRI hav been optimized. The design result shows the field inhomogeneity of B1 field below 1.5 dB in the 25 cm DSV can be achieved. Method: Our low field RF coil is composed of 4 rectangular strip loops that assumed to b located at both the bottom and top sides of permanent magnet. All the loops have identica dimensions and current amplitude. First, the inductance of a loop is calculated. Second, the current distribution on the coil strip is calculated by using finite difference time doma method (FDTD). It takes as much as 4 days in FDTD simulation for low frequency RF field That's why the electrical dipole radiation method is used for simulation. With the curren distribution obtained using the FDTD simulation, for various dimensional parameters th magnetic field has been calculated by electric dipole radiation method, where the curren elements are regarded as electric dipole radiation sources. The field pattern from electri dipole radiation is almost same as that from FDTD simulation. Also, it is same as that fro the result using the Viot-Savart equation, for far tone radiation term becomes zero and th Bl field amplitude of near one radiation is the same as the B field due to static current The field homogeneity is calculated in the 25 cm BSV.

  • PDF

자궁경부암 강내 방사선 조사장치에 의한 직장 및 방광의 피폭선량 평가 (Dose Distribution of Rectum and Bladder in Intracavitary Irradiation)

  • 추성실;오원용;서창옥;김귀언
    • Radiation Oncology Journal
    • /
    • 제2권2호
    • /
    • pp.261-270
    • /
    • 1984
  • The intrauterine irradiation is essential to achieve adequate tumor dose to central tumor mass of uterine malignancy in radiotherapy. The complications of pelvic organ are known to be directly related to radiation dose and physical parameters. The simulation radiation and medical records of 203 patients who were treated with intrauterine irradiation from Feb. 1983 to Oct. 1983, were critically analized. The physical parameters to include distances between lateral walls of vaginal fornices, longitudinal and lateral angles of tandem applicator to the body axis, the distance from the external os of uterine cervix to the central axis of ovoids were measured for low dose rate irradiation system and high dose rate remote control afterloading system. The radiation doses and dose distributions within cervical area including interesting points and bladder, rectum, according to sources arrangement and location of applicator, were estimated with personal computer. Followings were summary of study results ; 1. In distances between lateral walls of vaginal fornices, the low dose rate system showed as $4\~7cm$ width and high dose rate system showed as $5\~6cm$. 2. In horizontal angulation of tandem to body axis, the low dose rate system revealed mid position$64.6\%$, left deviation $19.2\%$and right deviation $16.2\%$. 3. In longitudinal angulation of tandem to body axis, the mid position was $11.8\%$ and anterior angulation $88.2\%$ in low dose rate system but in high dose rate system, anterior angulation was $98.5\%$. 4. Down ward displacement of ovoids below external os was only $3\%$ in low dose rate system and $66.7\%$ in high dose rate system. 5. In radiation source arrangement, the most activities of tandem and ovoid were 35 by 30 in low dose rate system but 50 by 40 in high dose rate system. 6. In low and high dose rate system, the total doses an4 TDF were 50, 70 Gy and 141, 123, including 40 Gy external irradiation. 7. The doses and TDF in interesting points Co, B, were 93, 47 Gy and 230, 73 in high dose rate system but in low doss rate system, 123, 52 Gy and 262, 75 respectively. 8. Doses and TDF in bladder and rectum were 70, 68 Gy and 124, 120 in low dose rate system, but in high dose rate system, 58, 64 Gy 98, 110 respectively, and then grades of injuries in bladder and rectum were 25, $30\%$ and 18, $23\%$ respectively.

  • PDF

Hormesis as a Confounding Factor in Epidemiological Studies of Radiation Carcinogenesis

  • Sanders Charles L.
    • Journal of Radiation Protection and Research
    • /
    • 제31권2호
    • /
    • pp.69-89
    • /
    • 2006
  • Biological mechanisms for ionizing radiation effects are different at low doses than at high doses. Radiation hormesis involves low-dose-induced protection and high-dose-induced harm. The protective component is associated with a reduction in the incidence of cancer below the spontaneous frequency, brought about by activation of defensive and repair processes. The Linear No-Threshold (LNT) hypothesis advocated by the International Commission on Radiological Protection (ICRP) and the Biological Effects of ionizing Radiation (BEIR) Report VII for cancer risk estimations Ignores hormesis and the presence of a threshold. Cancer incidences significantly less than expected have been found in a large number of epidemiological studies including, airline flight personnel, inhabitants of high radiation backgrounds, shipyard workers, nuclear site workers in scores of locations throughout the world, nuclear power utility workers, plutonium workers, military nuclear test site Participants, Japanese A-bomb survivors, residents contaminated by major nuclear accidents, residents of Taiwan living in $^{60}Co$ contaminated buildings, fluoroscopy and mammography patients, radium dial painters, and those exposed to indoor radon. Significantly increased cancer was not found at doses <200 $mSv^*$. Evidence for radiation hormesis was seen in both sexes for acute or chronic exposures, low or high LET radiations, external whole- or partial body exposures, and for internal radionuclides. The ubiquitous nature of the Healthy Worker Effect (HWE)-like responses in cellular, animal and epidemiological studies negates the HWE as an explanation for radiation hormesis. The LNT hypothesis is wrong and does not represent the true nature of the dose-response relationship, since low doses or dose-rates commonly result in thresholds and reduce cancer incidences below the spontaneous rate. Radiation protection organizations should seriously consider the cost and health implications of radiation hormesis.

Effect of UV Radiation on Early Growth of Korean Rice Cultivars(Oryza sativa L.)

  • Choi, Kwan-Sam;In, Jun-Gyo;Kang, Si-Yong;Bae, Chang-Hyu;Lee, Hyo-Yeon
    • 한국작물학회지
    • /
    • 제44권3호
    • /
    • pp.296-301
    • /
    • 1999
  • The concerns on the crop damage by ultraviolet (UV) radiations is increasing owing to the decrease of their absorbing stratospheric ozone in the tropospheric. Cultivar differences on early growth of UV radiation among five Korean rice cultivars, four japonica types and one Tongil type (indica-japonica cross hybrid), were studied. Pot-seeded rice plants were grown under four different radiation conditions, i.e., visible radiation only, visible radiation with supplemented with high or low dose of UV-B (280~320 nm in wavelength) and UV-C (less than 280 nm in wavelength). The inhibitory degree on plant height, shoot and root weight and length of leaf blade and leaf sheath were determined at 40 days after seeding. UV-C showed the most severe inhibitory effect on the degree of biomass gain and leaf growth in most cultivars examined, followed by high UV-B and low UV-B. Among the cultivars used, the Kuemobyeo was the most sensitive cultivar and had not repair or showed resistance ability to continued irradiation of UV radiation. However, Janganbyeo and Jaekeon showed different responses that the elongation of leaf blades was promoted on 2nd and 3rd leaves and inhibited on 4th and 5th leaves but this inhibitory degree was reduced on 6 th and 7th leaves. Such tendency on leaf growth means that both cultivars had low sensitivity and most resistant ability to continued irradiation of UV radiation. While Tongil showed different response to enhanced UV radiation, ie., low UV-B promoted leaf growth but the inhibitory was severely increased by continued irradiation of high UV-B and UV-C, which means that Tongil had high threshold of UV radiation for response as an inhibitory light of plant growth. The results of this study indicate that the differences on sensitivity or resistant to the effects of UV radiation were existed among Korean rice cultivars.

  • PDF

IDENTIFICATION OF GENES EXPRESSED IN LOW-DOSE-RATE γ-IRRADIATED MOUSE WHOLE BRAIN

  • Bong, Jin Jong;Kang, Yu Mi;Choi, Seung Jin;Kim, Dong-Kwon;Lee, Kyung Mi;Kim, Hee Sun
    • Journal of Radiation Protection and Research
    • /
    • 제38권4호
    • /
    • pp.166-171
    • /
    • 2013
  • While high-dose ionizing radiation results in long term cellular cytotoxicity, chronic low-dose (<0.2 Gy) of X- or ${\gamma}$-ray irradiation can be beneficial to living organisms by inducing radiation hormesis, stimulating immune function, and adaptive responses. During chronic low-dose-rate radiation (LDR) exposure, whole body of mice is exposed to radiation, however, it remains unclear if LDR causes changes in gene expression of the whole brain. Therefore, we aim to investigate expressed genes (EGs) and signaling pathways specifically regulated by LDR-irradiation ($^{137}Cs$, a cumulative dose of 1.7 Gy for total 100 days) in the whole brain. Using microarray analysis of whole brain RNA extracts harvested from ICR and AKR/J mice after LDR-irradiation, we discovered that two mice strains displayed distinct gene regulation patterns upon LDR-irradiation. In ICR mice, genes involved in ion transport, transition metal ion transport, and developmental cell growth were turned on while, in AKR/J mice, genes involved in sensory perception, cognition, olfactory transduction, G-protein coupled receptor pathways, inflammatory response, proteolysis, and base excision repair were found to be affected by LDR. We validated LDR-sensitive EGs by qPCR and confirmed specific upregulation of S100a7a, Olfr624, and Gm4868 genes in AKR/J mice whole brain. Therefore, our data provide the first report of genetic changes regulated by LDR in the mouse whole brain, which may affect several aspects of brain function.

Tissue distribution, excretion and effects on genotoxicity of tritium following oral administration to rats

  • Lee, Jei Ha;Kim, Cha Soon;Choi, Soo Im;Kim, Rae-Kwon;Kim, Ji Young;Nam, Seon Young;Jin, Young Woo;Kim, In Gyu
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.303-309
    • /
    • 2019
  • Tritium is an important nuclide that must be monitored for radiation safety management. In this study, HTO was orally administered to rats at the level of 37 kBq ($1{\mu}Ci$) or 370 kBq ($10{\mu}Ci$) to examine tissue distribution and excretion levels. After sacrifice, wet and dry tissue samples were weighed and analyzed for tissue free-water tritium (TFWT) and organically bound tritium (OBT). The mean tissue concentrations of TFWT (OBT) were 30.9 (17.8) and 4.4 (8.1) Bq/g on days 7 and 13 at the 37 kBq level and 30.8 (64.6) Bq/g on day 17 at the 370 kBq level. To assess the cytogenetic damage due to tritium exposure, a cytokinesis-blocked micronucleus (MN) assay was performed in blood samples from rats exposed to HTO for 14 and 21 days after oral administration. There was no significant difference in the MN frequencies between the control and exposed rats.

저선량 핵의학 감마카메라 영상장치의 최근 발전 (Recent Development in Low Dose Nuclear Medicine Gamma Camera Imaging)

  • 황경훈;이병일;김용권;이해준;선용한
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권4호
    • /
    • pp.123-127
    • /
    • 2015
  • Recently, new gamma camera systems enabling low radiation dose imaging have been developed. We reviewed the recent development of these low dose gamma camera systems including high sensitivity detectors, device structures, noise reduction filters, efficient image reconstruction algorithms, low dose protocols, and so on. It is expected that further technological advances reduce both radiation dose and imaging time in gamma camera imaging especially for radiation-sensitive patients such as pediatric patients.