• 제목/요약/키워드: Low pressure turbine

검색결과 296건 처리시간 0.027초

저압터빈 블레이드의 균열 길이에 따른 동특성 변화 (Variation of Dynamic Characteristics of a Low Pressure Turbine Blade with Crack Length)

  • 양경현;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1281-1288
    • /
    • 2009
  • Variation of dynamic characteristics of a low pressure turbine blade with crack length is studied in this paper via both experiments and finite element model. Since most of the turbine blades used in domestic power plants are imported from abroad, it is necessary to understand their dynamic behavior in advance. When experimentally obtained natural frequencies and mode shapes are compared with those from FEM results, they are close to each other in their magnitude. Then, it is more feasible to use finite element model for analyzing the dynamic characteristics of a blade under various operation conditions (rotation speed, temperature, etc) as well as with a crack in the blade.

증기터빈 익렬유동에 관한 실험적 연구 (Experimental Study on Stream Turbine Cascade Flow)

  • 권순범;윤의수;김병지
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2177-2183
    • /
    • 1994
  • The rapid expansion or condensible gas such as moist air of steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the supersonic cascade flow of low pressure steam turbine, the entropy of the flow is increased, and the efficiency of the turbine is decreased. In the present study, to investigate the flow of moist air in 2-dimensional cascade made as the configuration of the tip section of the last actual steam turbine moving blade, the static pressure at both sides of pressure and suction of blade are measured by static pressure taps and the distribution of Mach number on both surfaces of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in a 2-dimensional stationary cascade of a practical steam turbine blade are clearly identified.

50KW 터보제너레이터용 가스터빈 엔진의 설계점/ 탈설계/과도성능해석 (On/Off-Design/Transient Analysis of a 50KW Turbogenerator Gas Turbine Engine)

  • 김수용;박무룡;조수용
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.87-99
    • /
    • 1997
  • Present paper describes on/off design performance of a 50KW turbogenerator gas turbine engine for hybrid vehicle application. For optimum design point selection, relevant parameter study is carried out. The turbogenerator gas turbine engine for a hybrid vehicle is expected to be designed for maximum fuel economy, ultra low emissions, and very low cost. Compressor, combustor, turbine, and permanent-magnet generator will be mounted on a single high speed (82,000 rpm) shaft that will be supported on air bearings. As the generator is built into the shaft, gearbox and other moving parts become unnecessary and thus will increase the system's reliability and reduce the manufacturing cost. The engine has a radial compressor and turbine with design point pressure ratio of 4.0. This pressure ratio was set based on calculation of specific fuel consumption and specific power variation with pressure ratio. For the given turbine inlet temperature, a rather conservative value of $1100^\circK$ was selected. Designed mass flow rate was 0.5 kg/sec. Parametric study of the cycle indicates that specific work and efficiency increase at a given pressure ratio and turbine inlet temperature. Off design analysis shows that the gas turbine system reaches self operating condition at N/$N_{DP}$ = 0.53. Bleeding air for turbine stator cooling is omitted considering low TIT and for a simple geometric structure. Various engine performance simulations including, ambient temperature influence, surging at part load condition. Transient analysis were performed to secure the optimum engine operating characteristics. Surge margin throughout the performance analysis were maintained to be over 80% approximately. Validation of present results are yet to be seen as the performance tests are scheduled by the end of 1998 for comparison.

  • PDF

주파수 응답해석을 통한 제작공차를 가지는 저압터빈 케이싱의 고진동 원인 규명 (Investigation of the Cause of High Vibration in a Low Pressure Turbine Casing with Manufacturing Defects by Frequency Response Analysis)

  • 윤희철;우창기;황재곤
    • 한국생산제조학회지
    • /
    • 제24권4호
    • /
    • pp.463-468
    • /
    • 2015
  • High vibration of a low pressure (LP) turbine casing caused safety problems and life at the facility it was housed in. The main focus of this study was the cause of the high vibration in a low pressure turbine casing with manufacturing defects by frequency response analysis, compared with the results of experiments. Therefore, excited accelerations were obtained from the LP casing fundamental, and frequency responses were analyzed. The measurement and the modal analysis showed that the natural frequency of the LP turbine casing was 61.26 Hz and the excited frequency of the turbine rotor was 60.25 Hz. The manufacturing defect caused a decrease in the casing natural frequency and resulted in the high vibration of the casing because it moved close to the resonant frequency.

저압터빈용 로터강의 이축 피로수명예측법에 관한 연구 (Study of Axial and Torsional Fatigue Life Prediction Method for Low Pressure Turbine Rotor Steels)

  • 현중섭;송기욱;이영신
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.149-155
    • /
    • 2005
  • The rotating components such as turbine rotors in service are generally subjected to multiaxial cyclic loading conditions. The prediction of fatigue lift for turbine rotor components under complex multiaxial loading conditions is very important to prevent the fatigue failures in service. In this paper, axial and torsional low cycle fatigue tests were preformed for 3.5NiCrMo steels serviced low pressure turbine rotor of nuclear power plant. Several methods to predict biaxial fatigue life such as Tresca, von Mises and Brown & Miller's critical plane approach were evaluated to correlate the experimental results for serviced NiCrMoV steel. The fracture mode and fatigue characteristics of NiCrMoV steel were discussed based on the results of fatigue tests performed under the axial and torsional test conditions. In particular, the Brown and Miller's critical plane approach was found to best correlate the experimental data with predictions being within a factor of 2.

Analysis on Characteristic of Pressure Fluctuation in Hydraulic Turbine with Guide Vane

  • Shi, FengXia;Yang, JunHu;Wang, XiaoHui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.237-244
    • /
    • 2016
  • An unsteady three-dimensional simulation based on Reynolds time-averaged governing equation and RNG $k-{\varepsilon}$ turbulence model, was presented for pump-as-turbine, the pressure fluctuation characteristic of hydraulic turbine with guide vane was obtained. The results show that the time domains of pressure fluctuation in volute change periodically and have identical cycles. In volute tongue and inlet pressure fluctuations are light, while in dynamic and static coupling interface pressure fluctuations are serious; In impeller blade region the pressure fluctuation of pressure surface are lighter than that of suction surface. The dominant frequencies of pressure fluctuation concentrate in low frequency region, and concentrate within 2 times of the blade passing frequency.

3차원 축류형 터빈에서 입사각의 영향에 관한 실험적 연구 (An Experimental Study of Incidence Angel Effect on 3-D Axial Type Turbine)

  • 김동식;조수용
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1292-1301
    • /
    • 2002
  • An experimental study of turbine performance is conducted with various incidence angles on a rotating turbine rotor. 5 different incidence angles are applied from -17$^{\circ}$to 13$^{\circ}$with 7.5$^{\circ}$gaps. In order to precisely set up the incidence angles at the rotor inlet, 5 turbine discs are manufactured with the different fir tree section. Total-to-total efficiencies are obtained on the several off-design points with considering the exit total pressure, which is meas fred at 12 locations between the hub and casing using a pressure rake. The degree of reaction is 0.373 at the mean radius, and Reynolds number based on the rotor chord is 0.86$\times$10$^{5}$ at the turbine inlet on the design point experiment. The experiment on a single-stage turbine is conducted at the low-pressure and low-speed state, but it is sufficient to consider the blade loading effect due to the rotating apparatus even though the total pressure loss at the exit is increased proportionally to the turbine output power. The experimental results recommend 6$^{\circ}$as an optimum incidence angle on the turbine blade design. The total-to-total efficiency is steeply decreased when the incidence angle is over $\pm$9$^{\circ}$ from the optimum incidence angle. In the range of less than -10$^{\circ}$incidence angle, 7.5$^{\circ}$ reduction of incidence angle generates 15% decrease of total-to-total efficiency. This result is obtained on the same rotor blade by changing only the rotational speed to minimize the effect of profile and secondary flow loss in the passage. Experimental results show that the change rate of total-to-total efficiency according to the incidence angle change is unchanged although the turbine operates at the off-design condition.

복합화력 발전용 재열사이클 가스터빈의 운전상태 분석 (Analysis of Operation Conditions of a Reheat Cycle Gas Turbine for a Combined Cycle Power Plant)

  • 윤수형;정대환;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제9권6호
    • /
    • pp.35-44
    • /
    • 2006
  • Operation conditions of a reheat cycle gas turbine for a combined cycle power plant was analyzed. Based on measured performance parameters of the gas turbine, a performance analysis program predicted component characteristic parameters such as compressor air flow, compressor efficiency, efficiencies of both the high and low pressure turbines, and coolant flows. The predicted air flow and its variation with the inlet guide vane setting were sufficiently accurate. The compressor running characteristic in terms of the relations between air flow, pressure ratio and efficiency was presented. The variations of the efficiencies of both the high and low pressure turbines were also presented. Almost constant flow functions of both turbines were predicted. The current methodology and obtained data can be utilized for performance diagnosis.

Design and Analysis of A Pico Propeller Hydro Turbine Applied in Fish Farms using CFD and Experimental Method

  • Tran, Bao Ngoc;Kim, Jun-ho
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.373-380
    • /
    • 2019
  • In this paper, a pico hydro turbine employing low head circulation water at fish farms is designed and evaluated. Due to the advantages of simple structures, small head requirements, and low-cost investment, the constant thickness propeller turbine is considered as a feasible solution. The design process based on the free vortex method is presented in full detail, and a 4-blade runner is built using BladeGen. The turbine performance is analyzed both numerically and via experimental methods. Despite slight differences, the results show similar trends between CFD simulations and experiments carried out on factory test-rigs in a wide range of working conditions. At the design flow rate, the turbine achieves the best efficiency of 70 %, generating 3.5 kW power when rotating at 420 rpm. The internal flow field, as well as the turbine's behavior, are investigated through the distribution of blade streamlines, pressure, and velocity around the runner. Moreover, the pressure coefficient on the blade surface at 3 span positions is plotted while the head loss for each simulation domain is calculated and displayed by charts.

Turbine Performance Experiments for the Turbopump of a Liquid Rocket Engine

  • Lee, Hanggi;Shin, Juhyun;Jeong, Eunhwan;Choi, Changho
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.25-29
    • /
    • 2016
  • This paper highlights the performance of an impulse turbine which is a part of turbopump in a liquid rocket first stage engine. The turbopump, currently under development at Korea Aerospace Research Institute, has an impulse type turbine with 12 nozzles and a single rotor. The impulse turbine can archive high specific power with the low gas flow rates. The supersonic impulse turbine with a single rotor can make a simple structure. High-pressure gases are converted into the dynamic energy with flows through the 12 nozzles and drive the rotor to make the power for the pumps. The turbine test was performed in the high-pressured turbine test facility with air gas instead of burned gas. A hydraulic dynamometer was used to absorb the power from the turbine and control the rotational speed and torque. The test points were at several pressure ratios with 7 different rotational speeds. Results showed the efficiency was highest at the design pressure ratio. The efficiency was insensitive to the pressure ratio variation than the rotational speed. It was a typical characteristic in an impulse turbine.