• Title/Summary/Keyword: Low power control

Search Result 3,122, Processing Time 0.029 seconds

Design methodology of the rechargeable battery protection IC for low-power implementation (2차 전지 보호회로의 저전력 설계 기법)

  • 이종훈;김상민;김상호;김대정;김동명
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.169-172
    • /
    • 2002
  • A protection integrated circuit which enables the stable operation of the rechargeable battery should be designed with a low-power architecture because it consumes the power of the battery. This paper proposed a low-power scheme especially when the several series-connected batteries are provided. By adopting a time sharing control of the batteries, the chip size and power consumption could be reduced.

  • PDF

UPFC Control based on New IP Type Controller

  • Shirvani, Mojtaba;Keyvani, Babak;Abdollahi, Mostafa;Memaripour, Ahmad
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.664-671
    • /
    • 2012
  • This paper presents the application of Unified Power Flow Controller (UPFC) in order to simultaneous control of power flow and voltage and also damping of Low Frequency Oscillations (LFO) at a Single-Machine Infinite-Bus (SMIB) power system installed with UPFC. PI type controllers are commonly used controllers for UPFC control. But for the sake of some drawbacks of PI type controllers, the scope for finding a better control scheme still remains. In this regard, in this paper the new IP type controllers are considered as UPFC controllers. The parameters of these IP type controllers are tuned using Genetic Algorithms (GA). Also a stabilizer supplementary controller based UPFC is considered for increasing power system damping. To show the ability of IP controllers, this controller is compared with classical PI type controllers. Simulation results emphasis on the better performance of IP controller in comparison with PI controller.

Complementary Power Control of the Bipolar-type Low Voltage DC Distribution System

  • Byeon, Gilsung;Hwang, Chul-Sang;Jeon, Jin-Hong;Kim, Seul-Ki;Kim, Jong-Yul;Kim, Kisuk;Ko, Bokyung;Kim, Eung-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.786-794
    • /
    • 2015
  • In this paper, a new power control strategy for the bipolar-type low voltage direct current (LVDC) distribution system is being proposed. The dc distribution system is considered as an innovative system according to the increase of dc loads and dc output type distribution energy resources (DERs) such as photovoltaic (PV) systems and energy storage systems (ESS). Since the dc distribution system has many advantages such as feasible connection of DERs, reduction of conversion losses between dc output sources and loads, no reactive power issues, it is very suitable solution for new type buildings and residences interfaced with DERs and ESSs. In the bipolar-type, if it has each grid-interfaced converter, both sides (upper, lower-side) can be operated individually or collectively. A complementary power control strategy using two ESSs in both sides for effective and reliable operation is proposed in this paper. Detailed power control methods of the host controller and local controllers are described. To verify the performances of the proposed control strategy, simulation analysis using PSCAD/EMTDC is being performed where the results show that the proposed strategy provides efficient operations and can be applied to the bipolar-type dc distribution system.

An Improved Multi-Tuned Filter for High Power Photovoltaic Grid-Connected Converters Based on Digital Control

  • Sun, Guangyu;Li, Yongli;Jin, Wei
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.160-170
    • /
    • 2018
  • For high power photovoltaic (PV) grid-connected converters, high order filters such as multi-tuned filters and Traps+RC filters with outstanding filtering performance have been widely researched. In this paper, the optimization of a multi-tuned filter with a low damping resistance and research on its corresponding control scheme have been combined to improve the performance of the proposed filter. Based on the characteristics of the switching harmonics produced by PWM, the proposed filter is optimized to further improve its filtering performance. When compared with the more common Traps+RC filter, the advantages of the proposed filter with low damping resistances in attenuating the major switching harmonics have been demonstrated. In addition, a simpler topology and reduced power loss can be achieved. On the other hand, to make the implementation of the proposed filter possible, on the base of the unique frequency response characteristic of the proposed filter, a digital single-loop control scheme has been proposed. This scheme is a simple and effective means to suppress the resonance peak caused by a lack of damping. Therefore, a smaller volume, better efficiency of the proposed filter, and easy implementation of the corresponding control scheme can be realized. Finally, the superiority of the proposed filter topology and control scheme is verified in experiments.

New MPPT Control Strategy for Two-Stage Grid-Connected Photovoltaic Power Conditioning System

  • Bae, Hyun-Su;Park, Joung-Hu;Cho, Bo-Hyung;Yu, Gwon-Jong
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.174-180
    • /
    • 2007
  • In this paper, a simple control method for two-stage utility grid-connected photovoltaic power conditioning systems (PCS) is proposed. This approach enables maximum power point (MPP) tracking control with post-stage inverter current information instead of calculating solar array power, which significantly simplifies the controller and the sensor. Furthermore, there is no feedback loop in the pre-stage converter to control the solar array voltage or current because the MPP tracker drives the converter switch duty cycle. This simple PCS control strategy can reduce the cost and size, and can be utilized with a low cost digital processor. For verification of the proposed control strategy, a 2.5kW two-stage photovoltaic grid-connected PCS hardware which consists of a boost converter cascaded with a single-phase inverter was built and tested.

The Current and Power Waveform Improvement of an AC Motor with Low Pass LC Filter Driven by a Digital Bridge Inverter(II) (디지탈 브리지형 인버터로 구동되는 저역통과 LC 필터를 가진 교류전동기의 전류 및 전력의 파형 개선 (II))

  • 정주윤;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.79-91
    • /
    • 1995
  • Recently, the AC motor which has a simple structure and needs less maintenance has become to be used frequently as a servomotor for position control in the automatic control field. This paper concerns with a method to improve the current and power waveforms of an AC motor, and the current waveforms and 3$\phi$ power waveforms are analyzed by FFT under verious running conditions. The system is composed of a digital bridge inverter, low pass LC filter, and 3$\phi$ AC motor. Through the computer simulations and experiments, it is confirmed that current waveforms and $\phi$ power waveforms con by improved by utilizing the high order low pass LC filter than that of lower order.

  • PDF

Comparison of MPPT Based on Fuzzy Logic Controls for PMSG

  • Putri, Adinda Ihsani;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.285-286
    • /
    • 2011
  • Maximum Power Point Tracker (MPPT) is the big issue in generating power based on Wind Energy Conversion System. In case of unknown turbine characteristic, it is useful to implement MPPT based on fuzzy logic control. This kind of control is able to find the value of duty cycle to meet maximum power point at particular wind speed. There are many methods to develop MPPT based fuzzy logic controls. In this paper, two of the methods are compared both at low and high fluctuating wind speed.

  • PDF

Feed Forward Control of the MW Wind Turbine (MW 풍력터빈의 피드포워드 제어)

  • Im, Chang-hee;Nam, Yoon-su;Kim, Jeong-gi;Choi, Han-soon
    • Journal of Wind Energy
    • /
    • v.2 no.1
    • /
    • pp.82-89
    • /
    • 2011
  • his dissertation is on power control system for MW-class wind turbine. Especially, the control purpose is reduction in electrical power and rotor speed. The base control structure is power curve tracking control using variable speed variable pitch operational type. For the reduction of fluctuations, more control algorithm is needed in above rated wind conditions. Because general pitch control system is low dynamic response as compared with the wind speed change. So, this paper introduces about the pitch feed forward control to minimize fluctuations of the electrical power and rotor speed. To maintain rated electrical power, the algorithm of feed forward control adds feed forward pitch amount to the pitch command of power curve tracking control. The effectiveness of the feed forward control is verified through the simulation.

Power Decoupling Control Method of Grid-Forming Converter: Review

  • Hyeong-Seok Lee;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.221-229
    • /
    • 2023
  • Recently, Grid-forming(GFM) converter, which offers features such as virtual inertia, damping, black start capability, and islanded mode operation in power systems, has gained significant attention. However, in low-voltage microgrids(MG), it faces challenges due to the coupling phenomenon between active and reactive power caused by the low line impedance X/R ratio and a non-negligible power angle. This power coupling issue leads to stability and performance degradation, inaccurate power sharing, and control parameter design problems for GFM converters. Therefore, this paper serves as a review study on not only control methods associated with GFM converters but also power decoupling techniques. The aim is to introduce promising control methods and enhance accessibility to future research activities by providing a critical review of power decoupling methods. Consequently, by facilitating easy access for future researchers to the study of power decoupling methods, this work is expected to contribute to the expansion of distributed power generation.

Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller

  • Yao, Wei;Jiang, L.;Fang, Jiakun;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal in each sampling interval. Case studies are undertaken on a two-area four-machine power system and the New England 10-machine 39-bus power system, respectively. Simulation results show that the proposed adaptive WADC not only can damp the inter-area oscillations effectively under a wide range of operation conditions and different disturbances, but also has better robustness against to the time delay existing in the remote signals. The comparison studies with the conventional lead-lag WADC are also provided.