• Title/Summary/Keyword: Low power AES

Search Result 44, Processing Time 0.02 seconds

A Study on the Formation of Imperfections in CW $CO_2$Laser Weld of Diamond Saw Blade

  • Shin, M.;Lee, C.;Kim, T.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.21-24
    • /
    • 2002
  • The main purpose of this study was to investigate the formation mechanisms of imperfections such as irregular humps, outer cavity and inner cavity in the laser fusion zone of diamond saw blade. Laser beam welding was conducted to join two parts of blade; mild steel shank and Fe-Co-Ni sintered tip. The variables were beam power and travel speed. The microstructure and elements distributions of specimens were analyzed with SEM, AES, EPMA and so on. It was found that these imperfections were responded to heat input. Irregular humps were reduced in 10.4∼l7.6kJ/m heat input range. However there were no clear evidences, which could explain the relations between humps formation and heat input. The number of outer cavity and inner cavity decreased as heat input was increased. Considering both possible defects formations mechanisms, it could be thought that outer cavity was caused by insufficient refill of keyhole, which was from rapid solidification of molten metal and fast molten metal flow to the rear keyhole wall at low heat input. More inner cavities were found near the interface of the fusion zone and sintered segment and in the bottom of the fusion zone. Inner cavity was mainly formed in the upper fusion zone at high heat input whereas was in the bottom at low heat input. Inner cavity was from trapping of coarsened preexist pores in the sintered tip and metal vapor due to rapid solidification of molten metal before the bubbles escaped.

  • PDF

The surface kinetic properties of $ZrO_2$ Thin Films in dry etching by Inductively Coupled Plasma

  • Yang-Xue, Yang-Xue;Kim, Hwan-Jun;Kim, Dong-Pyo;Um, Doo-Seung;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.105-105
    • /
    • 2009
  • $ZrO_2$ is one of the most attractive high dielectric constant (high-k) materials. As integrated circuit device dimensions continue to be scaled down, high-k materials have been studied more to resolve the problems for replacing the EY31conventional $SiO_2$. $ZrO_2$ has many favorable properties as a high dielectric constant (k= 20~25), wide band gap (5~7 eV) as well as a close thermal expansion coefficient with Si that results in good thermal stability of the $ZrO_2/Si$ structure. In order to get fine-line patterns, plasma etching has been studied more in the fabrication of ultra large-scale integrated circuits. The relation between the etch characteristics of high-k dielectric materials and plasma properties is required to be studied more to match standard processing procedure with low damaged removal process. Due to the easy control of ion energy and flux, low ownership and simple structure of the inductively coupled plasma (ICP), we chose it for high-density plasma in our study. And the $BCl_3$ included in the gas due to the effective extraction of oxygen in the form of $BCl_xO_y$ compound In this study, the surface kinetic properties of $ZrO_2$ thin film was investigated in function of Ch addition to $BCl_3/Ar$ gas mixture ratio, RF power and DC-bias power based on substrate temperature. The figure 1 showed the etch rate of $ZrO_2$ thin film as function of gas mixing ratio of $Cl_2/BCl_3/Ar$ dependent on temperature. The chemical state of film was investigated using x-ray photoelectron spectroscopy (XPS). The characteristics of the plasma were estimated using optical emission spectroscopy (OES). Auger electron spectroscopy (AES) was used for elemental analysis of etched surface.

  • PDF

Characteristic of PECVD-$WN_x$ Thin Films Deposited on $Si_3N_4$ Substrate ($Si_3N_4$ 기판 위에 PECVD 법으로 형성한 Tungsten Nitride 박막의 특성)

  • Bae, Seong-Chan;Park, Byung-Nam;Son, Seung-Hyun;Lee, Jong-Hyun;Choi, Sie-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.17-25
    • /
    • 1999
  • Tungsten nitride($WN_x$) films were deposited by PECVD method on silicon nitride($WSi_3N_4$) substrate. The characteristics of $WN_x$ film were investigated with changing various processing parameters ; substrate temperature, gas flow rate, rf power, and different nitrogen sources. The nitrogen composition in $WN_x$ film varied from 0 to 45% according to the $NH_3$ and $N_2$ flow rate. The highest deposition rate of 160 nm/min was obtained for the $NH_3$ gas and relatively low deposition rate of $WN_x$ films were formed by $N_2$ gas. $WN_x$ films deposited on $WSi_3N_4$ substrate had higher deposition rate than that of TiN and Si substrates. The purity of $WN_x$ film were analyzed by AES and higher purity $WN_x$ films were deposited using $NH_3$ gas. The XRD analysis indicates a phase transition from polycrystalline tungsten(W) to amorphous tungsten nitride($WN_x$), showing improved etching profile of $WN_x$ films Thick $WN_x$ films were deposited on various substrates such as Tin, NiCr and Al and maximum thickness of $1.6 {\mu}m$ was obtained on the Al adhesion layer.

  • PDF

Plasma Etching Characteristics of Sapphire Substrate using $BCl_3$-based Inductively Coupled Plasma ($BCl_3$ 계열 유도결합 플라즈마를 이용한 사파이어 기판의 식각 특성)

  • Kim, Dong-Pyo;Woo, Jong-Chang;Um, Doo-Seng;Yang, Xue;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.363-363
    • /
    • 2008
  • The development of dry etching process for sapphire wafer with plasma has been key issues for the opto-electric devices. The challenges are increasing control and obtaining low plasma induced-damage because an unwanted scattering of radiation is caused by the spatial disorder of pattern and variation of surface roughness. The plasma-induced damages during plasma etching process can be classified as impurity contamination of residual etch products or bonding disruption in lattice due to charged particle bombardment. Therefor, fine pattern technology with low damaged etching process and high etch rate are urgently needed. Until now, there are a lot of reports on the etching of sapphire wafer with using $Cl_2$/Ar, $BCl_3$/Ar, HBr/Ar and so on [1]. However, the etch behavior of sapphire wafer have investigated with variation of only one parameter while other parameters are fixed. In this study, we investigated the effect of pressure and other parameters on the etch rate and the selectivity. We selected $BCl_3$ as an etch ant because $BCl_3$ plasmas are widely used in etching process of oxide materials. In plasma, the $BCl_3$ molecule can be dissociated into B radical, $B^+$ ion, Cl radical and $Cl^+$ ion. However, the $BCl_3$ molecule can be dissociated into B radical or $B^+$ ion easier than Cl radical or $Cl^+$ ion. First, we evaluated the etch behaviors of sapphire wafer in $BCl_3$/additive gases (Ar, $N_2,Cl_2$) gases. The behavior of etch rate of sapphire substrate was monitored as a function of additive gas ratio to $BCl_3$ based plasma, total flow rate, r.f. power, d.c. bias under different pressures of 5 mTorr, 10 mTorr, 20 mTorr and 30 mTorr. The etch rates of sapphire wafer, $SiO_2$ and PR were measured with using alpha step surface profiler. In order to understand the changes of radicals, volume density of Cl, B radical and BCl molecule were investigated with optical emission spectroscopy (OES). The chemical states of $Al_2O_3$ thin films were studied with energy dispersive X-ray (EDX) and depth profile anlysis of auger electron spectroscopy (AES). The enhancement of sapphire substrate can be explained by the reactive ion etching mechanism with the competition of the formation of volatile $AlCl_3$, $Al_2Cl_6$ or $BOCl_3$ and the sputter effect by energetic ions.

  • PDF