• Title/Summary/Keyword: Low permeable foundation

Search Result 3, Processing Time 0.021 seconds

The Evaluation of Seepage Characteristics in Reinforced Embankment Constructed on Low Permeable Clay Layer Through Centrifuge Model Tests (원심모형실험을 활용한 투수성이 낮은 기초지반에 위치한 보축 제방에서의 침투 거동)

  • Jin, Seok-Woo;Choo, Yun-Wook;Kim, Young-Muk;Kim, Dong-Soo;Im, Eun-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.27-39
    • /
    • 2012
  • In this paper, a series of centrifuge tests were performed to evaluate the seepage characteristic of reinforced embankment. The centrifuge models simulated an actual embankment reinforced by enlargement of levee cross-section. The centrifuge models have the same conditions except the locations of enlargement with low permeable material : water-side and land-side. In addition, the prototype embankment is constructed on low permeable clay layer. In the case of water-side reinforcement, the reinforced zone makes water head down and the saturated zone of embankment propagates slowly. In the case of land-side reinforcement embankment, the saturated zone enlarged relatively faster but the amount of exit water at land-side toe was very small because of the land-side reinforcement zone. The low permeable clay foundation layer was being continuously saturated by the inflow from the embankment as well as the uplift flow from the permeable layer induced by the excess pore water pressure.

The Characteristics for Seepage Behaviour of Soil Structure by Modeling Tests (모형실험에 의한 토공구조물의 침투거동특성)

  • 신방웅;강종범
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.158-167
    • /
    • 1999
  • In parallel flow condition, to estimate the stability of the extended embankment constructed on a permeable foundation ground, a laboratory model test was performed due to extended materials and water level increasing velocity of a flood period. A laboratory model test was peformed for different permeability coefficients ($K_1=2.0{\times}10^{-5}cm/sec,\;K_2=1.5{\times}10^{-4}cm/sec,\;K_3=2.3{\times}10^{-3}cm/sec$) using seepage. The fluctuation of water level occurring to an extended embankment was analyzed by laboratory model tests as vary the increasing velocity of water level with 0.6cm/min, 1.2cm/min, 2.4cm/min respectively. In analysis results, the increase of water level into embankment occurs rapidly because seepage water moving along with a permeable soil flow into embankment. The larger the permeability coefficient of an extended part is the longer initial seepage distance, and the exit point of downstream slope is gradually increased and then shows unstable seepage behavior as occurring partial collapse. As the increasing velocity of water level increase, the initial seepage line is formed low, and the discharge increases. Therefore, the embankment extended by a lower permeable soil than existing embankment shows stable seepage behavior because an existing embankment plays a role as filter for an extended part.

  • PDF

Numerical Analysis on Pore Water Pressure Reduction at Embankment Foundation of Fill Dam and Levee by Relief Well (감압정에 의한 필 댐 및 제방 기초지반의 간극수압 저감효과 수치해석)

  • Chang, Jaehoon;Yoo, Chanho;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.2
    • /
    • pp.25-36
    • /
    • 2022
  • In this study, seepage control effect of relief well was evaluated quantitatively on embankment of small fill dam and levee. Seepage analysis of dam and levee were carried out according to the permeability of fill material and foundation and to analyze behaviour characteristics of seepage. The up-lift pressure at toe of embankment was analyzed which is generated by seepage according to relief well installation condition. The relief well could reduce pore water pressure which is to cause piping or up-lift pressure at foundation ground of embankment and it does not be influenced on geometric condition such as dam height and slope incline. In case of relative low permeable ground, the pore water pressure reduction effect of relief well was decreased compare with high permeable ground but it shows pore water pressure reduction effect compare with no relief well condition. The reduction effect of relief well shows relative gap according to diameter and penetration length of relief well and the installation length of relief well is the most effective factor for seepage control.