• 제목/요약/키워드: Low noise broadband light source

검색결과 5건 처리시간 0.019초

저잡음 특성의 광대역 비간섭성 광원과 파장 분할 다중방식 수동형 광가입자망에의 응용 (A Low Noise Broadband Light Source and its Application on WDM-PON)

  • 최기만;문정형;이창희
    • 대한전자공학회논문지TC
    • /
    • 제43권5호
    • /
    • pp.68-76
    • /
    • 2006
  • 본 논문에서는 저잡음 특성을 지닌 광대역 비간섭성 광원 (BLS: Broadband Light Source)을 제안하고 이를 방송 및 통신의 통합 서비스를 제공하는 파장 분할 다중방식 수동형 광 가입자망 (WDM-PON: Wavelength Division Multiplexing-Passive Optical Network)에 적용함으로써 경제적인 광가입자망의 가능성을 시험하였다. 제안된 BLS는 경제적인 WDM-PON용 광원인 파장 잠김된 패브리 페롯 레이저 다이오드 (wavelength-locked F-P LD: wavelength-locked Fabry-Perot Laser Diode)를 위한 외부 주입 광원으로 사용되어 파장 무의존성 (color-free operation, i.e., wavelength independent operation)을 지닌 고밀도 WDM-PON (DWDM-PON: Dense WDM-PON)의 구현을 가능하게 한다. 또한 오버레이 (overlay) 방식의 방송 서비스를 위한 광원으로 응용되어 영상 및 화상 중심으로 융합된 서비스를 효율적으로 수용할 수 있는 광대역 통합망의 가능성을 시험하였다.

1.25 Gb/s Broadcast Signal Transmission in WDM-PON Based on Mutually Injected Fabry-Perot Laser Diodes

  • Yoo, Sang-Hwa;Mun, Sil-Gu;Kim, Joon-Young;Lee, Chang-Hee
    • Journal of the Optical Society of Korea
    • /
    • 제16권2호
    • /
    • pp.101-106
    • /
    • 2012
  • We demonstrate a cost effective broadcast signal transmission at 1.25-Gb/s with 100 GHz channel spacing based on a broadband light source (BLS) for a wavelength division multiplexing-passive optical network (WDM-PON). The BLS is implemented by using mutually injected Fabry-Perot laser diodes (MI F-P LDs). The error-free transmission without a forward error correction (FEC) is achieved by its low relative intensity noise (RIN). The number of usable modes is determined by RIN and/or extinction ratio (ER) in the spectrum sliced light output.

Faraday Rotator Glass 광섬유 센서코일을 이용한 전류센서의 기계적 변형에 대한 안정도 분석 (A Stability Analysis of Fiber-Optic Current Sensor about a Mechanical Deformation Using by Faraday Rotator Class Fiber Sensor Coil)

  • 김기혁;송민호
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 춘계학술대회 논문집
    • /
    • pp.53-57
    • /
    • 2004
  • The stabilization of fiber-optic current sensor has been achieved by using a broadband light source and a Faraday Rotator Glass fiber sensor coil. The very low Photo-elastic constant of the fiber suppressed output variations within ${\pm}0.4[%]$ when mechanical disturbance was applied to the sensor coil. Noise characteristics, with different light sources, have also been analyzed, which experimentally proved that the wider bandwidth source showed the better noise performance.

  • PDF

Performances of Erbium-Doped Fiber Amplifier Using 1530nm-Band Pump for Long Wavelength Multichannel Amplification

  • Choi, Bo-Hun;Chu, Moo-Jung;Park, Hyo-Hoon;Lee, Jong-Hyun
    • ETRI Journal
    • /
    • 제23권1호
    • /
    • pp.1-8
    • /
    • 2001
  • The performance of a long wavelength-band erbium-doped fiber amplifier (L-band EDFA) using 1530nm-band pumping has been studied. A 1530nm-band pump source is built using a tunable light source and two C-band EDFAs in cascaded configuration, which is able to deliver a maximum output power of 23dBm. Gain coefficient and noise figure (NF) of the L-band EDFA are measured for pump wavelengths between 1530nm and 1560nm. The gain coefficient with a 1545nm pump is more than twice as large as with a 1480nm pump. It indicates that the L-band EDFA consumes low power. The noise figure of 1530nm pump is 6.36dB at worst, which is 0.75dB higher than that of 1480nm pumped EDFA. The optimum pump wavelength range to obtain high gain and low NF in the 1530nm band appears to be between 1530nm and 1540nm. Gain spectra as a function of a pump wavelength have bandwidth of more than 10nm so that a broadband pump source can be used as 1530nm-band pump. The L-band EDFA is also tested for WDM signals. Flat Gain bandwidth is 32nm from 1571.5 to 1603.5nm within 1dB excursion at input signal of -10dBm/ch. These results demonstrate that 1530nm-band pump can be used as a new efficient pump source for L-band EDFAs.

  • PDF

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

  • Kang, Byoung-Wook;Lee, Kwanil;Lee, Sang Bae;Kim, Chul Han
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.436-441
    • /
    • 2014
  • We have demonstrated an amplified wavelength-division multiplexed (WDM) passive optical network (PON) by using broadband light source (BLS) seeded optical sources and chirped fiber Bragg gratings (FBGs) based dispersion compensators. Chirped FBGs located at central office (CO) were fabricated and used as channel-by-channel dispersion compensators in order to mitigate the dispersion-induced distortion of both downstream and upstream signals. Owing to a low insertion loss of chirped FBG based dispersion compensator, the optical signal-to-noise ratio (OSNR) of the downstream signal could be improved to be ~28 dB. Thus, we re-confirmed that an error-free transmission of 1.25 Gb/s signals over a 100 km single-mode fiber (SMF) link could be achieved with a proposed amplified WDM-PON architecture. We have also evaluated the impact of various noises on the system's performance, and found that the low OSNR of the downstream signal would be a main limiting factor on the maximum reach of the proposed amplified WDM-PON architecture. From the measured ~13 dB improvement in OSNR of the downstream signal compared to our previously-proposed dispersion compensating module based scheme, we believe that the proposed architecture can accommodate a reach of longer than 100 km SMF link easily.