• Title/Summary/Keyword: Low mode volume

Search Result 88, Processing Time 0.023 seconds

Feasibility Study of Deep Inspiration Breath-Hold Based Volumetric Modulated Arc Therapy for Locally Advanced Left Sided Breast Cancer Patients

  • Swamy, Shanmugam Thirumalai;Radha, Chandrasekaran Anu;Kathirvel, Murugesan;Arun, Gandhi;Subramanian, Shanmuga
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.9033-9038
    • /
    • 2014
  • Background: The purpose of this study was to assess the feasibility of deep inspiration breath-hold (DIBH) based volumetric modulated arc therapy (VMAT) for locally advanced left sided breast cancer patients undergoing radical mastectomy. DIBH immobilizes the tumor bed providing dosimetric benefits over free breathing (FB). Materials and Methods: Ten left sided post mastectomy patients were immobilized in a supine position with both the arms lifted above the head on a hemi-body vaclock. Two thermoplastic masks were prepared for each patient, one for normal free breathing and a second made with breath-hold to maintain reproducibility. DIBH CT scans were performed in the prospective mode of the Varian real time position management (RPM) system. The planning target volume (PTV) included the left chest wall and supraclavicular nodes and PTV prescription dose was 5000cGy in 25 fractions. DIBH-3DCRT planning was performed with the single iso-centre technique using a 6MV photon beam and the field-in-field technique. VMAT plans for FB and DIBH contained two partial arcs ($179^{\circ}-300^{\circ}CCW/CW$). Dose volume histograms of PTV and OAR's were analyzed for DIBH-VMAT, FB-VMAT and DIBH-3DCRT. In DIBH mode daily orthogonal ($0^{\circ}$ and $90^{\circ}$) KV images were taken to determine the setup variability and weekly twice CBCT to verify gating threshold level reproducibility. Results: DIBH-VMAT reduced the lung and heart dose compared to FB-VMAT, while maintaining similar PTV coverage. The mean heart $V_{30Gy}$ was $2.3%{\pm}2.7$, $5.1%{\pm}3.2$ and $3.3%{\pm}7.2$ and for left lung $V_{20Gy}$ was $18.57%{\pm}2.9$, $21.7%{\pm}3.9$ and $23.5%{\pm}5.1$ for DIBH-VMAT, FB-VMAT and DIBH-3DCRT respectively. Conclusions: DIBH-VMAT significantly reduced the heart and lung dose for left side chest wall patients compared to FB-VMAT. PTV conformity index, homogeneity index, ipsilateral lung dose and heart dose were better for DIBH-VMAT compared to DIBH-3DCRT. However, contralateral lung and breast volumes exposed to low doses were increased with DIBH-VMAT.

Difference in Patient's Work of Breathing Between Pressure-Controlled Ventilation with Decelerating Flow and Volume-Controlled Ventilation with Constant Flow during Assisted Ventilation (보조환기양식으로서 감속형유량의 압력-조절환기와 일정형유량의 용적-조절환기에서 환자의 호흡일의 차이)

  • Kim, Ho-Cheol;Park, Sang-Jun;Park, Jung-Woong;Suh, Gee-Young;Chung, Man-Pyo;Kim, Ho-Joong;Kwon, O-Jung;Rhee, Chong-H.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.6
    • /
    • pp.803-810
    • /
    • 1999
  • Background : The patient's work of breathing(WOBp) during assisted ventilation may vary according to many factors including ventilatory demand of the patients and applied ventilatory setting by the physician. Pressure-controlled ventilation(PCV) which delivers gas with decelerating flow may better meet patients' demand to improve patient-ventilator synchrony compared with volume-controlled ventilation(VCV) with constant flow. This study was conducted to compare the difference in WOBp in two assisted modes of ventilation, PCV and VCV with constant flow. Methods : Ten patients with respiratory failure were included in this study. Initially, the patients were placed on VCV with constant flow at low tidal volume($V_{T,\;LOW}$)(6-8 ml/kg) or high tidal volume($V_{T,\;HIGH}$)(10-12 ml/kg). After a 15 minute stabilization period, VCV with constant flow was switched to PCV and pressure was adjusted to maintain the same tidal volume($V_T$) received on VCV. Other ventilator settings were kept constant. Before changing the ventilatory mode, WOBp, $V_T$, minute ventilation($V_E$), respiratory rate(RR), peak airway pressure (Ppeak), peak inspiratory flow rate(PIFR) and pressure-time product(PTP) were measured. Results : The mean $V_E$ and RR were not different between PCV and VCV during the study period. The Ppeak was significantly lower in PCV than in VCV during $V_{T,\;HIGH}$. HIGH ventilation(p<0.05). PIFR was significantly higher in PCV than in VCV at both $V_T$ (p<0.05). During $V_{T,\;LOW}$ ventilation, WOBp and PTP in PCV($0.80{\pm}0.37\;J/min$, $164.5{\pm}74.4\;cmH_2O.S$) were significantly lower than in VCV($1.06{\pm}0.39J/mm$, $256.4{\pm}107.5\;cmH_2O.S$)(p<0.05). During $V_{T,\;HIGH}$ ventilation, WOBp and PTP in PCV($0.33{\pm}0.14\;J/min$, $65.7{\pm}26.3\;cmH_2O.S$) were also significantly lower than in VCV($0.40{\pm}0.14\;J/min$, $83.4{\pm}35.1\;cmH_2O.S$)(p<0.05). Conclusion : During assisted ventilation, PCV with decelerating flow was more effective in reducing WOBp than VCV with constant flow. But since individual variability was shown, further studies are needed to confirm these results.

  • PDF

Design of a Low Power Voice Signal Processing and Control Module using a $\mu$-controller for Totally Implantable Middle Ear system (마이크로컨트롤러를 이용한 완전 이식형 인공중이용 저전력 음성 신호처리 및 제어 모듈의 설계)

  • 강호경;정의성;임형규;박일용;윤영호;김민규;송병섭;조진호
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.49-56
    • /
    • 2004
  • A low power consuming voice signal processing and control module was designed using a small $\mu$-controller for use in a totally implantable middle ear system. The module was designed that it can control the implanted system as well as process the fitting algorithm of input sound signal. In ordinary operation mode, the $\mu$-controller processes the applied sound signal for compensating the hearing loss of the patients. When the control signal is applied from the IR receiving module, the $\mu$-controller interrupts the signal processing and executes the order of the control signals such as power on/off, volume up/down. The designed module was implemented and verified the performance of the system through several experiments.

A study of signal control with COSMOS on National Highway (신신호시스템(COSMOS)의 일반국도 적용에 대한 연구)

  • Baek Hyon-Su;Kim Young-Chan;Moon Hak-Yong;Kim Jong-Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.29-40
    • /
    • 2004
  • The performance of the National Highway is raised, but the capacity of the signalized intersection on the National Highway is low. It's operated by TOD(Time Of Day) mode. To evaluate of the performance of COSMOS(Cycle, Offset, Split Model for Seoul), a real time traffic adaptive signal control system, on the National Highway, studied volume, travel time and queuing length at TOD control and TRC(Traffic responsive Control). Consequently, the average travel speed at TRC is high $2.9\~16.7$km/h then the average travel speed at TOD control. And te queuing length at TRC is low $15\~196m$ then the queuing length at TOD control.

  • PDF

A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System (자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구)

  • Lee, Jin-Wook;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.

Computational Analysis of the Effects of Spray Parameters and Piston Shape on Syngas-Diesel Dual-Fuel Engine Combustion Process

  • Ali, Abubaker Ahmed M.M.;Kabbir, Ali;Kim, Changup;Lee, Yonggyu;Oh, Seungmook;Kim, Ki-seong
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.192-204
    • /
    • 2018
  • In this study, a 3D CFD analysis method for the combustion process was established for a low calorific value syngas-diesel dual-fuel engine operating under very lean fuel-air mixture condition. Also, the accuracy of computational analysis was evaluated by comparing the experimental results with the computed ones. To simulate the combustion for the dual-fuel engine, a new dual-fuel chemical kinetics set was used that was constituted by merging two verified chemical kinetic sets: n-heptane (173 species) for diesel and Gri-mech 3.0 (53 species) for syngas. For dual-fuel mode operations, the early stage of combustion was dominated by the fuel burning inside or near the spray plume. After which, the flame propagated into the syngas in the piston bowl and then proceeded toward the syngas in the squish zone. With the baseline injection system and piston shape, a significant amount of unburned syngas was discharged. To solve this problem, effects of the injection parameters and piston shape on combustion characteristics were analyzed by calculation. The change in injection variables toward increasing the spray plume volume or the penetration length were effective to cause fast burning in the vicinity of TDC by widening the spatial distribution of diesel acting as a seed of auto-ignition. As a result, the unburned syngas fraction was reduced. Changing the piston shape with the shallow depth of the piston bowl and 20% squish area ratio had a significant effect on the combustion pattern and lessened the unburned syngas fraction by half.

Effect of cavity shape, bond quality and volume on dentin bond strength (와동의 형태, 접착층의 성숙도, 및 와동의 부피가 상아질 접착력에 미치는 영향)

  • Lee, Hyo-Jin;Kim, Jong-Soon;Lee, Shin-Jae;Lim, Bum-Soon;Baek, Seung-Ho;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.450-460
    • /
    • 2005
  • The aim of this study was to evaluate the effect of cavity shape, bond quality of bonding agent and volume of resin composite on shrinkage stress developed at the cavity floor. This was done by measuring the shear bond strength with respect to iris materials (cavity shape , adhesive-coated dentin as a high C-factor and Teflon-coated metal as a low C-factor), bonding agents (bond quality: $Scotchbond^{TM}$ Multi-purpose and Xeno III) and iris hole diameters (volume; 1mm or 3mm in $diameter{\times}1.5mm$ in thickness). Ninety-six molars were randomly divided into 8 groups ($2{\times}2{\times}2$ experimental setup). In order to simulate a Class I cavity, shear bond strength was measured on the flat occlusal dentin surface with irises. The iris hole was filled with Z250 restorative resin composite in a bulk-filling manner. The data was analyzed using three-way ANOVA and the Tukey test. Fracture mode analysis was also done When the cavity had high C-factor, good bond quality and large volume, the bond strength decreased significantly The volume of resin composite restricted within the well-bonded cavity walls is also be suggested to be included in the concept of C-factor, as well as the cavity shape and bond quality. Since the bond quality and volume can exaggerate the effect of cavity shape on the shrinkage stress developed at the resin-dentin bond, resin composites must be filled in a method, which minimizes the volume that can increase the C-factor.

Drying Characteristics of Osmotically Pre-treated Carrots (삼투처리한 당근의 건조 특성)

  • Youn, Kwang-Sup;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1126-1134
    • /
    • 1996
  • The physical characteristics changes of carrots during drying were studied to minimize the quality degradation by applying improved drying process and pretreatment method. Physico-chemical properties of the product were analyzed, and then, drying mechanisms were explained by diffusion coefficients and drying models. In hot air drying process, the drying and rehydration efficiencies were high at low relative humidity and high temperature. Browning degree and specific volume also showed similar trend to drying efficiency. Diffusion coefficient, which describes moisture transfer, was also high at low relative humidity and at high temperature. It was verified using. Arrhenius equation that drying process was influenced by temperature. It was also observed during experiment that temperature changes were more effective in drying than relative humidity changes. Quadratic model was the most fittable in explaining the process. As a result of analyzing the experimental data with respect to the drying time, the contents of carotene and moisture could be modeled as a polynomial. As the air velocity increased, drying performance and rehydration efficiency increased.

  • PDF

Effect of Relative Humidity on the Breakthrough of Charcoal Tubes during Mixed Organic Vapor Sampling (혼합 유기용제 포집시 습도가 활성탄관의 파과에 미치는 영향)

  • Yang, Hyeok Syng;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.125-137
    • /
    • 1996
  • This study was designed to investigate effects of relative humidity on the breakthrough of charcoal tubes at a fixed vapor concentration and sampling time during mixed organic vapor sampling. A vapor generator was used to generate three different concentrations of mixed organic vapor and a stainless steel chamber was fabricated and utilized to maintain three different percentages of relative humidity while maintaining a constant temperature. The results were as follows; 1. At high relative humidity, breakthrough of mixed organic vapor occurred quickly at low vapor concentration than at high vapor concentration because of the reduced adsorption volume of charcoal tube due to humidity. 2. Breakthrough by competitive adsorption of vapors onto charcoal tube was observed at first from n-hexane having the lowest boiling point and highest vapor pressure among the three organic vapors investigated, followed by TCE. No breakthrough was observed from toluene under all experimental conditions. 3. For n-hexane, breakthrough was observed after 2 hours of sampling and breakthrough rates were increased as relative humidity increased. For TCE, breakthrough was found after 3 hours of sampling and breakthrough rates by sampling time were increased as vapor concentration increased. 4. The adsorbed amount of mixed organic vapor at breakthrough was shown to have statistically significant correlations with sampling time, relative humidity, and vapor concentration in descending order of correlation. Relative humidity and sampling time for n-hexane and sampling time and concentration for TCE were both statistically significantly correlated. 5. Relative humidity was found to affect the amount of breakthrough of mixed organic vapor and n-hexane. Among three percentages of relative humidity investigated, the amount of breakthrough at 85 % relative humidity was significantly larger than those of at lower percentages of relative humidity. No statistically significant difference was found between 25 % and 55 % relative humidity. 6. The results of multiple regression analysis between breakthrough and relative humidity, vapor concentrations showed that the coefficient of determination of mixed organic vapor was 0.263 and those of n-hexane and TCE were 0.275 and 0.189, respectively. 7. Flow rates of sampling pumps used were found to be affected by relative humidity present. At 25 %, 55 %, and 85 % relative humidity, the relative errors of sampling pump were 1.4 %, 13.4 %, and 18.6 %, respectively. In conclusion, the results of this study showed that high relative humidity could reduce the adsorption volume of charcoal tubes and subsequently increase breakthrough rates. Therefore, to prevent breakthrough when sampling mixed organic vapors, it is suggested that either sampling volume be reduced on the flow rate be lowered so as to minimize breakthrough of the most volatile organic vapor in the mixture. In addition, since the flow rates of a sampling pump can be adversely affected by high relative humidity, it is recommended to use a constant flow mode pump when sampling in the highly humid environment.

  • PDF

Comparative study on effects of volume-controlled ventilation and pressure-limited ventilation for neonatal respiratory distress syndrome (신생아 호흡곤란 증후군에서 volume-controlled ventilation과 pressure-limited ventilation의 효과에 관한 비교연구)

  • Kim, Jae Jin;Hwang, Mun Jung;Lee, Sang Geel
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.1
    • /
    • pp.21-27
    • /
    • 2010
  • Purpose : In contrast with traditional time-cycled, pressure-limited ventilation, during volume-controlled ventilation, a nearly constant tidal volume is delivered with reducing volutrauma and the episodes of hypoxemia. The aim of this study was to compare the efficacy of pressure-regulated, volume controlled ventilation (PRVC) to Synchronized intermittent mandatory ventilation (SIMV) in VLBW infants with respiratory distress syndrome (RDS).Methods : 34 very low birth weight (VLBW) infants who had RDS were randomized to receive either PRVC or SIMV with surfactant administration : PRVC group (n=14) and SIMV group (n=20). We compared peak inspiratory pressure (PIP), duration of mechanical ventilation, and complications associated with ventilation, respectively with medical records. Results : There were no statistical differences in clinical characteristics between the groups. After surfactant administration, PIP was significantly lower during PRVC ventilation for 48hrs and accumulatevive value of decreased PIP was higher during PRVC ventilation for 24hrs (P<0.05). Duration of ventilation and incidence of complications was no significant difference. Conclusion : PRVC is the mode in which the smallest level of PIP required to deliver the preset tidal volume in VLBW infants with RDS, adaptively responding to compliance change in lung after surfactant replacement.