• Title/Summary/Keyword: Low level jet

Search Result 76, Processing Time 0.038 seconds

Production of Transgenic Micro-Pig Expressing Human Heme Oxygenase 1

  • Koo, Ok Jae;Oh, Hyun Ju;Lee, Byeong Chun
    • Journal of Embryo Transfer
    • /
    • v.30 no.4
    • /
    • pp.305-313
    • /
    • 2015
  • Xenotransplantation of pig islet regarded as a good alternative to allotransplantation. However, cellular death mediated by hypoxia-reoxygenation injury after transplantation disturb success of this technique. In the present study, we produce transgenic pig expressing human heme oxygenase 1 (HO1) genes to overcome cellular death for improving efficiency of islet xenotransplantation. Particularly, Korean miniature pig breed, Micro-Pig, was used in the present study. Somatic cell nuclear transfer (SCNT) technique was used to produce the HO1 transgenic pig. Six alive transgenic piglets were produced and all the transgenic pigs were founded to have transgene in their genomic DNA and the gene was expressed in all tested organs. Also, in vitro cultured fibroblasts derived from the HO1 transgenic pig showed low reactive oxygen species level, improved cell viability and reduced apoptosis level.

Case Study of a Shallow Tunnelling Through Complex Strata of Sand-Gravel and Rock Mass (모래자갈과 암반의 복합지층에 시공한 저심도 터널의 사례연구)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.244-254
    • /
    • 2015
  • The tunnel is excavated through the alluvial layer composed of sand and gravel with groundwater deposited on rock. A portion of upper part of the tunnel is located in the alluvial layer and there are several buildings just above the curved section of the tunnel. It is necessary to prevent from sand-flowing into the tunnel due to low strength of the alluvial, high groundwater level and shallow depth of the tunnel from the ground surface. For this, the alluvial around the tunnel is pre-reinforced by umbrella arch method with multi-stage grouting through large diameter steel pipes or jet grouting before excavating the tunnel. The effect of the pre-reinforcement of the tunnel and the safety of the buildings are monitored by measurement of ground deformation occurred during tunnelling.

An Experimental Study on Flow control around Foil with Coanda effect (콴다효과를 이용한 익 주위의 유동제어에 관한 실험적 연구)

  • Oh, Kyoung-Gun;Cho, Dae-Hwan;Lee, Gyoung-Woo;Ko, Jae-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.65-69
    • /
    • 2006
  • The flow around a foil with water jet was investigated using the two-frame PIV(CACTUS 3.1) system. After separation, unsteady recirculation & reattachment region was shown a result at reading edge. Separation area was decreased to 1/3 more by waterjet system with coanda effect. Angle of attack and water jet velocity was a variable in the experiment. Each parameters was controlled to $0^{\circ}\sim35^{\circ}$ and $0[m/s]\sim9.2[m/s]$. The separation of flow appearanced at first when the angle of attack is $17^{\circ}\sim18^{\circ}$, However, according to grew up of velocity, beginning of the separation was delayed. In this experiment, vortex and separation region was disappeared by blown when each parameters are low level, and separation controlled more certainly.

  • PDF

Distribution of Precipitation on the Korean Peninsula Associated with the Weakening of Tropical Cyclones (태풍의 약화와 관련된 한국의 강수량 분포)

  • Hwang, Ho-Seong;Byun, Hi-Ryong;Lee, Sang-Min;Choi, Ki-Seon;Lee, Ji-Sun
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.322-334
    • /
    • 2010
  • Spatiotemporal characteristics of precipitation in Korea, associated with the weakening of Tropical Cyclones (TCs) around the Korean Peninsula ($32-36^{\circ}N$, $122-132^{\circ}E$) over the last 30 years (1979-2008), were investigated. Weakened TCs are classified as WEC (Weakened to Extratropical Cyclone) and WTD (Weakened to Tropical Depression). In WEC, precipitation was evenly distributed all over the Korean Peninsula and the greater precipitation was recorded in the southern coast. In WTD, the most precipitation was recorded in the southern coast but low precipitation was recorded in the central and inland areas of Korea. The difference of precipitation between WEC and WTD was not statistically significant in Region 2 (Jeollanam-do, Gyeongsangnam-do, southeastern part of Gyeongsangbuk-do, Jeju-do); however, the precipitation resulting from WEC was greater than that resulting from WTD in Region 1 (central area of Korea, Jeollabuk-do, inland of Gyeongsangbuk-do). In WEC, the developed upper-level potential vorticity (PV) and low-level temperature trough shifted to the northwest of TCs approaching Korea. In addition, an upper-level jet stream and strong divergence field were observed to the northeast of the TCs. It was assumed that these meteorological factors had induced baroclinic instability and diabatic process, which created a large precipitation area around the TCs. However, the intense PV, temperature trough, jet stream were not observed in WTD, which created a small precipitation area around the TCs.

Investigations on aerosols transport over micro- and macro-scale settings of West Africa

  • Emetere, Moses Eterigho
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.75-86
    • /
    • 2017
  • The aerosol content dynamics in a virtual system were investigated. The outcome was extended to monitor the mean concentration diffusion of aerosols in a predefined macro and micro scale. The data set used were wind data set from the automatic weather station; satellite data set from Total Ozone Mapping Spectrometer aerosol index and multi-angle imaging spectroradiometer; ground data set from Aerosol robotic network. The maximum speed of the macro scale (West Africa) was less than 4.4 m/s. This low speed enables the pollutants to acquire maximum range of about 15 km. The heterogeneous nature of aerosols layer in the West African atmosphere creates strange transport pattern caused by multiple refractivity. It is believed that the multiple refractive concepts inhibit aerosol optical depth data retrieval. It was also discovered that the build-up of the purported strange transport pattern with time has enormous potential to influence higher degrees of climatic change in the long term. Even when the African Easterly Jet drives the aerosols layer at about 10 m/s, the interacting layers of aerosols are compelled to mitigate its speed to about 4.2 m/s (macro scale level) and boost its speed to 30 m/s on the micro scale level. Mean concentration diffusion of aerosols was higher in the micro scale than the macro scale level. The minimum aerosol content dynamics for non-decaying, logarithmic decay and exponential decay particulates dispersion is given as 4, 1.4 and 0 respectively.

Statistical Energy Analysis of Low-Altitude Earth Observation Satellite (저궤도 지구관측 위성의 통계적 에너지 해석)

  • Woo, Sung-Hyun;Kim, Hong-Bae;Im, Jong-Min;Kim, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.197-202
    • /
    • 2006
  • The low-altitude earth observation satellite is generally equipped with high performance camera as a main payload which is vulnerable to vibration environment. During the launch process of a satellite, the combustion and jet noise of launch vehicle produce severe acoustic environment and the acoustic loads induced may damage the critical equipments of the satellite including the camera. Therefore to predict and simulate the effect of the acoustic environment which the satellite has to sustain at the lift-off event is very important process to support the load-resistive design and test-qualification of components. Statistical Energy Analysis(SEA) has been widely used to estimate the vibro-acoustic responses of the structures and gives statistical but reliable results in the higher frequency region with less modeling efforts and calculation time than the standard FEA. In this study, SEA technique has been applied to a 3-Dimensional model of a low-altitude earth observation satellite to predict the acceleration responses on the structural components induced by the high level acoustic field in the launch vehicle fairing. In addition, the expected response on each critical component panel was calculated by the classical method in consideration of the mass loading and imposed sound pressure level, and then compared with SEA results.

  • PDF

Reynolds Number Effects on Aerodynamic Characteristics of Compressor Cascades for High Altitude Long Endurance Aircraft

  • Kodama, Taiki;Watanabe, Toshinori;Himeno, Takehiro;Uzawa, Seiji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.195-201
    • /
    • 2008
  • In the jet engines on the aircrafts cruising at high altitude over 20 km and subsonic speed, the Reynolds number in terms of the compressor blades becomes very low. In such an operating condition with low Reynolds number, it is widely reported that total pressure loss of the air flow through the compressor cascades increases dramatically due to separation of the boundary layer and the secondary-flow. But the detail of flow mechanisms causes the total pressure loss has not been fully understood yet. In the present study, two series of numerical investigations were conducted to study the effects of Reynolds number on the aerodynamic characteristics of compressor cascades. At first, the incompressible flow fields in the two-dimensional compressor cascade composed of C4 airfoils were numerically simulated with various values of Reynolds number. Compared with the corresponding experimental data, the numerically estimated trend of total pressure loss as a function of Reynolds number showed good agreement with that of experiment. From the visualized numerical results, the thickness of boundary layer and wake were found to increase with the decrease of Reynolds number. Especially at very low Reynolds number, the separation of boundary layer and vortex shedding were observed. The other series, as the preparatory investigation, the flow fields in the transonic compressor, NASA Rotor 37, were simulated under the several conditions, which corresponded to the operation at sea level static and at 10 km of altitude with low density and temperature. It was found that, in the case of operation at high altitude, the separation region on the blade surface became lager, and that the radial and reverse flow around the trailing edge become stronger than those under sea level static condition.

  • PDF

The Relation between the Spectral Lag and the Collimation-Corrected Luminosity in Gamma-Ray Bursts

  • Jo, Yun-A;Chang, Heon-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.51.3-52
    • /
    • 2015
  • Gamma-Ray Bursts(GRBs) are the most violent event in the universe, whose detection rate is a few in a day. The spectral lag, which is commonly observed in the observed light curves of GRBs, is a difference in arrival times of the high-energy and low-energy photons. The relation between the spectral lag and the luminosity of the observed GRBs is shown to be anti-correlated in previous studies. In reported relations to date, the isotropic luminosity has been assumed. On the other hand, GRBs are likely to emit its energy through a beamed jet. In this study, we attempt to obtain the relation between the spectral lag and the collimation-corrected luminosity. We have calculated collimation-corrected luminosities and opening angles using the observed light curves taken from a database of Swift/BAT, XRT. We expect to increase its significance level by expanding a sample size compared with those previously analyzed.

  • PDF

A Study on Waterjet Fracture Mechanism for Granitic Rocks (화강암에 대한 워터젯 파쇄 메커니즘에 관한 연구)

  • Oh, Tae-Min;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.643-648
    • /
    • 2010
  • Waterjet is a very useful technology for rock excavation because of low level noise and vibration during breaking rocks. To accurately predict the volume and shape excavated by the waterjet, it is important to understand waterjet fracture mechanisms. There have been various theoretical assumptions and approaches in the literature. In this study, waterjet mechanisms are classified into three standards: a mechanism scale, theoretical assumption for a target material, and jet phase. In addition, through a waterjet experimental study for weathered and intact granitic rocks, a fracture shape is observed and analyzed on comparison with the previous mechanisms. As a result, best waterjet mechanisms are selected to explain the fracture pattern of the granitic rocks.

  • PDF

Protection of Canola (Low Glucosinolate Rapeseed) Meal and Seed Protein from Ruminal Degradation - Review -

  • Mustafa, A.F.;McKinnon, J.J.;Christensen, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.4
    • /
    • pp.535-542
    • /
    • 2000
  • Canola meal and seed are poor sources of ruminal undegraded protein (RUP). On average, canola meal and canola seed contains 35 and 14% RUP, respectively. Several protection methods are effective in reducing ruminal degradation of canola protein and in increasing RUP without affecting total tract protein digestibility. Heat (e.g., dry heat, moist heat and jet-sploding) and chemical (e.g., formaldehyde) treatments are the most common methods used to reduce ruminal degradability of canola protein. In most cases, heat treatments were found to be more effective than chemical treatments in protecting canola protein form ruminal degradation. Despite improvement in RUP content and intestinal availability of RUP, data form several studies showed little or no improvement in animal performance as a result of increasing the RUDP level of canola meal and seed.