• 제목/요약/키워드: Low friction coating

검색결과 121건 처리시간 0.021초

크로마이징 처리 된 철계 소결 부품의 내식성 및 저 마찰특성 (Corrosion Resistance and Low Friction Property of Sintered Steel Parts via Chromizing Treatment)

  • 김상권;박용진;여국현;이재훈
    • 대한금속재료학회지
    • /
    • 제50권11호
    • /
    • pp.809-815
    • /
    • 2012
  • Recently, as the interest in improving energy efficiency has grown, the demand for vehicle and machine parts that are resistant in high temperature corrosive conditions and abrasive environments has increased. Pack chromizing treatment of sintered steels is a profitable method that satisfies both corrosion resistance and low friction properties. Since austenitic stainless steels have good corrosion resistance but low mechanical hardness, if they are replaced by sintered steel parts with pack chromizing treatment, all the desirable properties such as low price, easy molding, high hardness, low frictional coefficient, and high corrosion resistance, can be obtained. The higher corrosion resistance of the chromized parts over that of the austenitic stainless steels was acquired by coating chromium carbides and a thin chromium oxides layer on the surface. Moreover, the surface morphology of chromized parts, which were composed of chromium rich phases and hardened chromium carbides by diffusing and alloying, had a peak-and-valley shape so that the dimple effect by the wrinkled morphology and high hardness induced a low friction coefficient.

나노다이아몬드가 첨가된 프라이팬 불소수지코팅의 Tribological 특성 연구 (A Study on the Tribological Characteristics of a Frying Pan Coated with PTFE and Nano-Diamond)

  • 이진호;김현수;윤한기;김태규
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.99-104
    • /
    • 2009
  • PTFE has good mechanical and chemical stability at a wide range of temperatures and demonstrates a low friction coefficient value. PTFE is being used for self-lubricating parts in industry. But it shows a high wear rate. Thus, PTFE and nano-diamond powder were mixed into a composite and the wear properties of a PTFE coating layer on Al6061 was investigated. A ball-on-disk type of wear tester was used under a dry condition and different temperatures of oil. After the wear test, the wear track wasexamined by optical microscope. The PTFE-diamond showed the lowest friction coefficient (0.02) of all the lubricants in the experiments. The friction coefficient was shown to be directly related to the diamond powder in the PTFE coating. Adhesion estimations were performed by a scratch test, which is mainly used for coatings. The critical load between the coating and substrate was defined through analyses of the friction load, normal load curve, and acoustic emissions, along with optical microscope observations. The scratch test results showed that an import item (SWISS) gave the highest critical load values.

액체금속(GaInSn)윤활하에서 DLC(ta-C) 코팅된 레이저 표면 텍스쳐링 딤플패턴의 미끄럼 마찰특성평가 (Evaluation of Sliding Friction Properties of Laser Surface Texturing Dimple Pattern with DLC Coating under GaInSn Liquid Metal Lubricant)

  • 권규빈;장영준;채영훈
    • Tribology and Lubricants
    • /
    • 제37권3호
    • /
    • pp.106-111
    • /
    • 2021
  • There are several studies on reducing the friction that occurs on the relative sliding contact surface of moving parts under extreme environments. In particular, a solid lubricated bearing is studied to solve the tribological problem with friction reduction and durability parts using solid lubricants (lead or silver) in a vacuum atmosphere. Galinstan is mainly used as a liquid metal lubricant, but it is inevitable to have limited tribological applications owing to its high coefficient of friction. Many researchers work on surface texturing for surface modification and precision processing methods. To increase durability and low friction, DLC coating with hydrophobicity is applied on the contact surface texture. Therefore, using an untextured specimen, a dimple specimen, and a DLC-coated dimple specimen under liquid metal lubrication, this paper presents the following experimental sliding friction characteristics in the sliding friction test. 1) The average coefficient of friction of the DLC-coated dimple specimen and dimple specimen are lower compared to that of a non-patterned specimen. 2) In the DLC-coated dimple specimens, the average coefficient of friction changes according to the change in the dimple density. 3) DLC-coated dimple specimens with a density of 12.5 have the lowest average coefficient of friction under 41.6 N of normal load and 143.3 RPM.

공정 온도에 따른 사면체 비정질 카본 (ta-C) 코팅의 트라이볼로지적 특성연구 (Effects of Process Temperature on the Tribological Properties of Tetrahedral Amorphous Carbon (ta-C) Coating)

  • 강용진;김도현;류호준;김종국;장영준
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.362-368
    • /
    • 2019
  • In this study, mechanical and tribological properties were investigated by varying the process temperature (50, 100, 125 and 150℃) to reduce internal stress. The internal stress reduction by thermal dissociation ta-C coating film with increasing temperature is confirmed through the curvature radius of the ta-C coating according to the temperature of the SUS plate. As the coating temperature increased, the mechanical properties (hardness, modulus, toughness) deteriorated, which is in agreement with the Raman analysis results. As the temperature increased, the sp2 phase ratio increased owing to the dissociation of the sp3 phase. The friction and wear properties are related to the process temperature during ta-C coating. Low friction and wear properties are observed in high hardness samples manufactured at 50℃, and wear resistance properties decreased with increasing temperature. The contact area is expected to increase owing to the decrease of hardness(72 GPa to 39 GPa) and fracture toughness with increasing temperature which accelerated wear because of the debris generated. It was confirmed that at process temperature of over than 100℃, the bond structure of the carbon film changed, and the effect of excellent internal stress was reduced. However, the wear resistance simultaneously decreased owing to the reduction in fracture toughness. Therefore, in order to increase industrial utilization, optimum temperature conditions that reduce internal stress and retain mechanical properties.

IBAD로 표면개질된 실리콘 표면의 나노 트라이볼로지적 특성 (Nanotribological Characteristics of Silicon Surfaces Modified by IBAD)

  • 박지현;양승호;공호성;장경영;윤의성
    • Tribology and Lubricants
    • /
    • 제18권1호
    • /
    • pp.1-8
    • /
    • 2002
  • Nano adhesion and friction between a $Si_{3}N_{4}$ AFM(atomic force microscope) tip and thin silver films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM and LFM(lateral force microscope) modes in various range of normal loads. Thin silver films deposited by IBAD (ion beam assisted deposition) on Si-wafer (100) and other Si-wafers of different surface roughness were used. Results showed that nano adhesion and friction decreased with the surface roughness. When the Si surfaces were coated by pure silver, the adhesion and friction decreased. But the adhesion and friction were not affected by the thickness of IBAD silver coating. As the normal force increased, the adhesion forces of bare Si-wafer and IBAD silver coating film remained constant, but the friction forces increased linearly. Test results suggested that the friction was mainly governed by the adhesion as long as the load was low.

Application of ta-C Coating on WC Mold to Molded Glass Lens

  • Lee, Woo-Young;Choi, Ju-hyun
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.106-113
    • /
    • 2019
  • We investigated the application of tetrahedral amorphous carbon (ta-C) coatings to fabricate a glass lens manufactured using a glass molding process (GMP). In this work, ta-C coatings with different thickness (50, 100, 150 and 200 nm) were deposited on a tungsten carbide (WC-Co) mold using the X-bend filter of a filtered cathode vacuum arc. The effects of thickness on mechanical and tribological properties of the coating were studied. These ta-C coatings were characterized by atomic force microscopy, scanning electron microscopy, nano-indentation measurements, Raman spectrometry, Rockwell-C tests, scratch tests and ball on disc tribometer tests. The nano-indentation measurements showed that hardness increased with an increase in coating thickness. In addition, the G-peak position in the Raman spectra analysis was right shifted from 1520 to $1586cm^{-1}$, indicating that the $sp^3$ content increased with increasing thickness of ta-C coatings. The scratch test showed that, compared to other coatings, the 100-nm-thick ta-C coating displayed excellent adhesion strength without delamination. The friction test was carried out in a nitrogen environment using a ball-on-disk tribometer. The 100-nm-thick ta-C coating showed a low friction coefficient of 0.078. When this coating was applied to a GMP, the life time, i.e., shot counts, dramatically increased up to 2,500 counts, in comparison with Ir-Re coating.

고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구 (A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel)

  • 강경모;신동갑;박영훈;김세웅;김대은
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

Diamond-like Carbon Tribological Endurance using an Energetic Approach

  • Alkelae, Fathia;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • 제37권5호
    • /
    • pp.179-188
    • /
    • 2021
  • Reputed for their low friction coefficient and wear protection effect, diamond-like carbon (DLC) materials are considered amongst the most important lubricant coatings for tribological applications. In this framework, this investigation aims to elucidate the effect of a few operating parameters, such as applied stress and sliding amplitude on the friction lifetime of DLC coatings. Fretting wear tests are conducted using a 12.7 mm radius counterpart of 52100 steel balls slid against a substrate of the same material coated with a 2 ㎛ thickness DLC. Approximately, 5 to 57 N force is applied, generating a maximum Hertzian contact pressure of 430 to 662 MPa, corresponding to the applied force. The coefficient of friction (CoF) generates three regimes, first a running-in period regime, followed by a steady-state evolution regime, and finally a progressive increase of the CoF reaching the steel CoF value, as an indicator of reaching the substrate. To track the wear scenario, interrupted tests are performed with analysis combining scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), 3D profilometer and micro-Raman spectroscopy. The results show two endurance values: one characterizing the coating failure (Nc1), and the other (Nc2) indicating the friction failure which is situated where the CoF reaches a threshold value of μth = 0.3 in the third regime. The Archard energy density factor is used to determine the two endurance values (Nc1, Nc2). Based on this approach, a master curve is established delimitating both the coating and the friction endurances.

코팅 및 표면 처리된 강의 고하중 영역에서의 마모 마찰 특성 (Friction and Wear Behavior of Coating and Surface Treated Steel for Low Velocity High Pressure Application)

  • 임동필;심동섭;김상범
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.386-392
    • /
    • 2008
  • Friction and wear behavior of hard coated and surface treated steel with candidate processing methods for low velocity high pressure application investigated. Wear tests were carried out under specific region considering the operation condition of construction equipments under lubricated and unlubricated condition. Different tribological behavior analyzed with comparing the wear rate of counter part, morphology and topography of worn surface and the worn volume of samples and counter parts.