• Title/Summary/Keyword: Low energy

Search Result 11,924, Processing Time 0.038 seconds

The Regressive Causal Structure of Heating Energy Consumption Affected by Household Income and Housing Characteristics (소득수준과 주택특성에 따른 난방에너지 소비의 역진적 인과구조)

  • Choi, Mack Joong;Chung, I Re
    • Journal of Korea Planning Association
    • /
    • v.53 no.6
    • /
    • pp.101-116
    • /
    • 2018
  • Paying an attention to the issue of energy poverty of low-income households and ensuing regressivity of energy consumption, this study empirically analyzes the effects of both household and housing characteristics on heating energy consumption in an integrated way and identifies their causal structure based on the 2016 Korea Housing Survey data provided by the Korean government. Multiple regression analysis shows that household income and deteriorated level of housing, such as age and degree of cracks have positive effects and floor area of housing has a negative effect on the heating energy consumption per unit area of housing (HECPUH). Path analyses further reveal that the direct effect of household income on HECPUH is offset by the indirect effects that are mediated by deteriorated level and floor area of housing, making the total effect statistically insignificant. As a result, there is no significant difference in HECPUH across all income strata, implying that low-income (high-income) households pay more (less) heating costs relative to their income level, since they reside in the houses with relatively low (high) energy efficiency. To deal with this regressive causal structure of energy consumption, a policy option is recommended to improve energy efficiency of low-income housing through the government assistance in its maintenance and repair.

Experimental Analysis of Propensity for Spontaneous Combustion of Low-Rank Coal Upgraded by Spray Coating with Heavy Oil (중질유 분무 코팅에 의한 저등급 석탄의 고품위화와 자연발화 특성 분석)

  • Chun, Dong Hyuk;Park, In Soo;Kim, Sang Do;Rhim, Young Joon;Choi, Ho Kyung;Yoo, Jiho;Lim, Jeong Hwan;Lee, Si Hyun
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • Upgrading technology has been studied for efficient utilization of low rank coal. Spray coating of heavy oil was applied on the upgrading process in order to stabilize low rank coal against spontaneous combustion. Low rank coal, which contains more than 30wt% of moisture, was upgraded to high calorific coal and stabilized by spray coating of heavy oil. It was identified that spray coating of heavy oil after drying coal is the optimum procedure of upgrading low rank coal. The experimental results show that more than 2wt% of heavy oil should be adsorbed on the coal in order to stabilize sufficiently for spontaneous combustion.

Calculation of Low-Energy Reactor Neutrino Spectra for Reactor Neutrino Experiments

  • Riyana, Eka Sapta;Suda, Shoya;Ishibashi, Kenji;Matsuura, Hideaki;Katakura, Jun-ichi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.155-159
    • /
    • 2016
  • Background: Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. Materials and Methods: To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% $^{235}U$ contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. Results and Discussion: We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. $^{241}Pu$) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate Conclusion: Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

An Empirical Study on the Operation of Cogeneration Generators for Heat Trading in Industrial Complexes

  • Kim, Jaehyun;Kim, Taehyoung;Park, Youngsu;Ham, Kyung Sun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.29-39
    • /
    • 2019
  • In this study, we introduce a model that satisfies energy efficiency and economical efficiency by introducing and demonstrating cogeneration generators in industrial complexes using various actual data collected at the site. The proposed model is composed of three scenarios, ie, full - time operation, scenario operated according to demand, and a fusion type. In this study, the power generation profit and surplus thermal energy are measured according to the operation of the generator, and the thermal energy is traded according to the demand of the customer to calculate the profit and loss including the heat and evaluate the economic efficiency. As a result of the study, it is relatively profitable to reduce the generation of the generator under the condition that the electricity rate is low and the gas rate is high, while the basic charge is not increased. On the contrary, if the electricity rate is high and the gas rate is low, The more you start up, the more profit you can see. These results show that even a cogeneration power plant with a low economic efficiency due to a low "spark spread" has sufficient economic value if it can sell more than a certain amount of heat energy from a nearby customer and adjust the applied power through peak management.

Measurement of low energy beta radiation from Ni-63 by using peeled-off Gafchromic EBT3 film

  • Ji, Wanook;Kim, Jong-Bum;Kim, Jin-Joo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3811-3815
    • /
    • 2022
  • Ni-63 is pure beta source which emits low energy beta particles. The Ni-63 sources were fabricated to develop the beta-voltaic battery which converts decay energy into electrical energy for power generation. Activity distribution of the source was important factor of power producibility of the beta-voltaic battery. Liquid scintillation counter widely used for measurement of low energy beta emitters was not suitable to measure activity distribution. In this study, we used the peeled-off Gafchromic™ EBT3 film to measure the activity distribution of the Ni-63 source. Absorbed dose was increased proportionally to the source activity and exposure duration. The low energy beta particles could transport the energy into the active layer without the polyester protective layer. Also, Activity distribution was measured by using the peeled-off EBT3 film. Two-dimensional dosimetric distribution was suitable to measure the activity distribution. To use the peeled-off EBT3 film is user-friendly and cost-effective method for quality assurance of the Ni-63 sources for the beta-voltaic battery.

Design and analysis of low velocity impact on thermoplastic hat section with curvilinear profile

  • Gaur, Kumresh K;Dwivedi, Mayank;Bhatnagar, Naresh
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.65-78
    • /
    • 2017
  • A hat section was designed and developed for maximum impact energy absorption and/or transmission under low velocity impact. Towards this, different hat sections, having material properties of thermoplastic, were modeled and investigated numerically using finite element analysis (FEA) in the range of 20-50 J impact energy. In the study it was experienced that the design configuration of hat section with curvilinear profile (HSCP) was excellent in energy attenuation capacity and for even distribution of maximum impact force around and along the hat section under low velocity impact loading. To validate the numerical findings, polypropylene copolymer (Co-PP) HSCP and low density polyethylene (LDPE) HSCP were developed and evaluated experimentally in the said impact energy range. A correlation was established between FEA and experimental test results, thereby, validating a numerical model to predict results for other thermoplastic materials under given range of impact energy. The LDPE HSCP exhibited better performance as compared to Co-PP HSCP in the said range of impact energy. The findings of this study will enable the engineers and technologists to design and develop low velocity impact resistance devices for various applications including devices to protect bone joints.

Customer Preference Analysis System using Bluetooth Low Energy (저전력 블루투스를 사용한 사용자 성향 분석 시스템)

  • Nguyen, Hieu Trong;Park, Jisun;Xi, Yulong;Park, San;Jang, Hyeonjun;Hong, Sungbin;Kim, Junoh;Cho, Kyungeun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.1073-1074
    • /
    • 2017
  • In this paper, we present a customer preference analysis system using the Bluetooth Low Energy technology. Compared to Classic Bluetooth, Bluetooth Low Energy provides considerably reduced power consumption, and cost, as well as some unique characteristics while maintaining a similar communication range. The customer preference analysis system collects nearby Bluetooth Low Energy devices using an Android mobile device via Bluetooth Low Energy. In addition, the system is capable of suggesting, and advertising products that are related to these Bluetooth Low Energy devices based on the name of their manufacturer. This feature aims to attract potential customers to purchase these products.

Influence of Protein and Energy Level in Finishing Diets for Feedlot Hair Lambs: Growth Performance, Dietary Energetics and Carcass Characteristics

  • Rios-Rincon, F.G.;Estrada-Angulo, A.;Plascencia, A.;Lopez-Soto, M.A.;Castro-Perez, B.I.;Portillo-Loera, J.J.;Robles-Estrada, J.C.;Calderon-Cortes, J.F.;Davila-Ramos, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.55-61
    • /
    • 2014
  • Forty-eight Pelibuey${\times}$Katahdin male intact lambs ($23.87{\pm}2.84$ kg) were used in an 84-d feeding trial, with six pens per treatment in a $2{\times}2$ factorial design arrangement. The aim of the study was to evaluate the interaction of two dietary energy levels (3.05 and 2.83 Mcal/kg ME) and two dietary protein levels (17.5% and 14.5%) on growth performance, dietary energetics and carcass traits. The dietary treatments used were: i) High protein-high energy (HP-HE); ii) High protein-low energy (HP-LE); iii) Low protein-high energy (LP-HE), and iv) Low protein-low energy (LP-LE). With a high-energy level, dry matter intake (DMI) values were 6.1% lower in the low-protein diets, while with low-energy, the DMI values did not differ between the dietary protein levels. Energy levels did not influence the final weight and average daily gain (ADG), but resulted in lower DMI values and higher gain efficiencies. No effects of protein level were detected on growth performance. The observed dietary net energy (NE) ratio and observed DMI were closer than expected in all treatments and were not affected by the different treatments. There was an interaction (p<0.03) between energy and protein level for kidney-pelvic and heart fat (KPH), KPH was higher in lambs fed high energy and high protein diet but not in high energy and low protein diet. The KPH was increased (20.2%, p = 0.01) in high-energy diets, while fat thickness was increased (21.7%, p = 0.02) in high-protein diets. Therefore, it is concluded that dietary energy levels play a more important role in feed efficiency than protein levels in finishing lambs with a high-energy diet (>2.80 Mcal/kg ME). Providing a level of protein above 14.5% does not improves growth-performance, dietary energetics or carcass dressing percentage.

The Analysis on Energy Performance according to Characteristics of Glazing in High-rise Office Buildings (Glazing 특성에 따른 고층 오피스 건물의 에너지성능 분석)

  • Hwang, Woo-Jin;Kim, Kyo-Joon;Choi, Won-Ki
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.156-161
    • /
    • 2011
  • In case of newly constructed buildings, the construction type is almost Curtain-wall system or large window in building skin. However, these kind of buildings have problems with regulations on building energy efficiency. And national regulations on building energy efficiency limit only the V-factor of window(except infiltration), it is hard to predict energy consumption of Curtain-wall buildings which gain large solar energy in summer. In this study, the influence of LSG(Light to Solar Gain) on energy performance was theoretically analyzed with simulation. LSG is the value of VLT divide SHGC and represents the optical performance of the glass or glazing. The Window & Therm program developed in LBNL was used to analyze window systems and EnergyPlus was used to building energy. Cases of glazing are three types; single coated Low-e clear glazing, tripple coated Low-e clear glazing, tripple coated Low-e tinted glazing. The results of this study are follows; 1) The building energy consumption of Alt-l, 2, 3 were about 300, 253, $259kWh/m^2{\cdot}yr$ respectively. Therefore, improvement of LSG could save the energy up to 16%. 2) The saved energy could be converted 1 billion won as annual benefit of total energy costs 3) SHGC and LSG more influence on cooling energy than heating energy in office buildings.

  • PDF

Study on the Development of Recuperative Thermal Oxidation System for the Volatile Organic Compounds (휘발성 유기물질의 고효율 열산화 시스템 개발 연구)

  • Hyun, Ju-Soo;Lee, Si-Hyun;Lee, Jong-Sup;Min, Byoung-Moo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.225-230
    • /
    • 2004
  • Volatile organic compounds (VOCs) are low calorific value gases (LCVG) emitted from chemical processes such as painting booth, dye works and drying processes etc. Characteristics of VOCs are low calorific values less than 150 kcal/$m^3$, high activation energy for ignition and low energy output. These characteristics usually make combustion unstable and its treatment processes needs high-energy consumption, The cyclone combustion system is suitable for LCVG burning because it can recirculate energy through a high swirling flow to supply the activation energy for ignition, increases energy density to make a combustion temperature higher than usual swirl combustor and also increases mixing intensity, This research was conducted to develop optimized cyclone combustion system for thermal oxidation of VOCs. This research was executed to establish the effect of swirl number with respect to the combustion temperature and composition of exhausted gas in the specific combustor design.

  • PDF