• 제목/요약/키워드: Low emissions alternative fuelled engine

검색결과 6건 처리시간 0.018초

순수 DME 및 DME 혼합연료의 직접분사식 디젤기관의 성능 및 배기가스 특성에 관한 연구 (A Study on Performance and Exhaust Emissions of DI Diesel Engine Operated with Neat DME and DME Blended Fuels)

  • 표영덕;김강출;이영재;김문헌
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.75-82
    • /
    • 2003
  • DME is a good alternative fuel to reduce the smoke remarkably when used in a diesel engine, while problems concerned with low lubricity and high compressibility exist. In the present study, single cylinder DI diesel engine was operated with neat DME and DME blended fuels which are DME-diesel blended fuel and DME-propane blended fuel. The results showed that the power of the neat DME and DME blended fuels was the same as that of pure diesel oil, and the specific energy consumption slightly increased. In addition, smoke emission was considerably reduced with the increase of DME content up to zero level, but NOx emission was slightly increased.

LPG-DME 혼합연료를 사용하는 전기점화 기관의 성능 및 배기특성에 관한 연구 (Performance and Emissions of a SI Engine Operated with LPG-DME Blended Fuel)

  • 이석환;오승묵;강건용;최원학;차경옥
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.175-182
    • /
    • 2008
  • In this study, a spark ignition engine operated with LPG and DME blended fuel was studied experimentally. Performance and emissions characteristics of a LPG engine fuelled by LPG and DME blended fuel were examined. Results showed that stable engine operation was possible for a wide range of engine loads within 20% mass content of DME fuel. Also, engine output power within 10% mass content of DME fuel was comparable to pure LPG fuel operation. Exhaust emissions measurements showed that hydrocarbon and NOx were increased with the blended fuel at low engine speed. Engine output power was decreased and break specific fuel consumption (BSFC) was severely increased with the blended fuel since the energy content of DME was much lower than that of LPG. Considering the results of engine output power and exhaust emissions, the blended fuel within 20% mass content of DME could be used as an alternative fuel for LPG.

The Performance and Emissions Analysis of a Multi Cylinder Spark Ignition Engine with Gasoline LPG & CNG

  • Chauhan, Bhupendra Singh;Cho, Haeng-Muk
    • 한국가스학회지
    • /
    • 제15권4호
    • /
    • pp.33-38
    • /
    • 2011
  • The introduction of alternative fuels is beneficial to overcome the fuel shortage and reduce engine exhaust emissions. LPG and CNG are relatively clean fuel and considered as most promising alternative automotive fuels worldwide because of its emission reduction potential and lower fuel price compared to gasoline. Now a day’s adaptation of dual fuel approach is the growing as common trend. The two fuels can be successfully implemented with existing gasoline engine with little modification. The present study was done to analyze the performance and emissions analysis of a multi cylinder spark ignition engine fuelled with the benefits of CNG and LPG aseffective alternate automotive fuels by simply using them in an unmodified petrol engine. The test results indicate, the energy content of CNG and LPG is the most limiting factor in acceptance for fuel economy and performance reasons. Thermal efficiency was high for CNG lowest for gasoline and LPG between the two. BSFC, CO and HC were low and NOx was high for CNG and low for gasoline, LPG lies between the two.

A HYDROGEN FUELLED V-8 ENGINE FOR CITY-BUS APPLICATION

  • Sierens, R.;Verhelst, S.
    • International Journal of Automotive Technology
    • /
    • 제2권2호
    • /
    • pp.39-45
    • /
    • 2001
  • Hydrogen is seen as one of the important energy vectors of the next century. Hydrogen as a renewable energy source, provides the potential for a sustainable development particularly in the transportation sector. Hydrogen driven vehicles reduce both local as well as global emissions. The laboratory of transporttechnology (University of Gent) converted a GM/Crusader V-8 engine for hydrogen use. Once the engine is optimised, it will be built in a low-floor midsize hydrogen city bus for public demonstration. For a complete control of the combustion process and to increase the resistance to backfire (explosion of the air-fuel mixture in the inlet manifold), a sequential timed multipoint injection of hydrogen and an electronic management system is chosen. The results as a function of the engine parameters (ignition timing. injection timing and duration, injection pressure) we given. Special focus is given to topics related to the use of hydrogen as a fuel: ignition characteristics (importance of electrode distance), quality of the lubricating oil (crankcase gases with high contents of hydrogen), oxygen sensors (very lean operating conditions), noise reduction (configuration and length of inlet pipes). The advantages and disadvantages of a power regulation only by the air to fuel ratio (as for diesel engines) against a throttle regulation (normal gasoline or gas regulation) are examined. Finally the goals of the development of the engine are reached: power output of 90 kW, torque of 300 Nm, extremely low emission levels and backfire-safe operation.

  • PDF

목질 열분해유를 사용하는 디젤엔진의 성능 및 배기특성에 관한 연구 (Performance and Emission Characteristics of a Diesel Engine Operated with Wood Pyrolysis Oil)

  • 이석환;박준혁;최영;우세종;강건용
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.102-112
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is emulsification of BCO with diesel and bio diesel. In this study, a diesel engine operated with diesel, bio diesel (BD), BCO/diesel, BCO/bio diesel emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by BCO emulsions were examined. Results showed that stable engine operation was possible with emulsions and engine output power was comparable to diesel and bio diesel operation. However, in case of BCO/diesel emulsion operation, THC & CO emissions were increased due to the increased ignition delay and poor spray atomization and NOx & Soot were decreased due to the water and oxygen in the fuel. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion and clogging especially in the injection system.

A Comparative Study on the Performance and Emission Analysis of a Dual Fuelled Diesel Engine with Karanja Biodiesel and Natural Gas

  • Singh, Ashish Kumar;Kumar, Naveen;Amardeep, Amardeep;Kumar, Parvesh
    • International Journal of Advanced Culture Technology
    • /
    • 제4권1호
    • /
    • pp.10-18
    • /
    • 2016
  • In the present study, a single cylinder four stroke dual fuel diesel engine was tested to investigate the performance and emission characteristics of various test fuels. The engine was tested in dual fuel mode using diesel and Karanja biodiesel blends as pilot fuel along with Natural gas as primary fuel with a constant gas flow rate under different loading conditions. From the experimentation it was found that smoke opacity and oxides of nitrogen (NOx) are at low level for all the prepared test fuels in dual fuel mode but the emissions of carbon monoxide (CO), carbon dioxide ($CO_2$) and hydrocarbon (HC) were found higher. In comparison to diesel fuel, by increasing the blend percentage different emission parameters are found to be reduced. At different loading conditions all the test fuels show poor performance in dual fuel mode of operation when compared with single mode of operation with diesel and biodiesel. With increase in gas flow rates, except (NOx) and smoke emissions, the other emission parameters like CO, HC and $CO_2$ values increased for all test fuels. Again, all blended fuels showed lower performance compared to diesel. The maximum pilot fuel savings for diesel was found decreasing with the increase in karanja biodiesel. From the present work it may be concluded that Karanja biodiesel with Natural gas in dual mode can be can used as promising alternative for diesel with some required engine modifications and further research must be carried out to minimize the emissions of CO, HC and $CO_2$.