• Title/Summary/Keyword: Low altitude UAV

Search Result 76, Processing Time 0.03 seconds

Intercooler for Multi-stage Turbocharger Design and Analysis of the Hydrogen Reciprocating Engine for HALE UAV (고고도 장기체공 무인기용 수소 왕복 엔진의 다단터보차저용 인터쿨러 설계 및 해석)

  • Lee, Yang Ji;Rhee, Dong Ho;Kang, Young Seok;Lim, Byoeung Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2017
  • Intercoolers for multi-stage turbocharger of the hydrogen reciprocating engine for HALE UAV are installed for reducing the charged air inlet temperature of the engine. The intercooler is air to air, cross flow, plate-fin type and the fin configuration is offset-strip fin which is referenced from the heat exchanger of the ERAST. Most of HALE UAV's cruising altitude is 60,000 ft and the density of air for this altitude is very low compared to sea level. Therefore the required heat transfer area for the HALE UAV is about three-times bigger than the sea level. Consequently, it is essential to design to meet the required efficiency of intercooler in the range of not excessively growing the weight of the heat exchanger. The quasi-one dimensional heat transfer design/analysis for satisfying the requirement of the engine are written in this paper. The numerical analyses for estimating the coolant flow rate of the engine bay and pressure loss in the header and core are also summarized.

Ground Altitude Computation Algorithm using Laser Altimeter and GPS for UAV Automatic Take-off and Landing (레이저 고도계 및 GPS를 이용한 무인기의 자동이착륙용 지면고도계산 알고리듬 설계)

  • Cho, Sangook;Choi, Keeyoung;Kim, Sung-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • This paper presents a ground altitude determination algorithm using a laser altimeter and GPS for automatic take-off and landing of UAV. The characteristics of the laser altimeter was analyzed in ground tests and a low-pass filter was designed to reduce the effect of signal interruption due to reflectivity problem. The paper shows that a single sensor cannot measure ground altitude appropriately in terms of reliability and accuracy. To complement shortcomings of the laser altimeter, the linear Kalman filter was designed using DGPS vertical speed. Designed filter was validated and tuned through the steps of simulation, ground test and flight test. It was confirmed that the accuracy for automatic landing is achievable.

A Study of Path-Finding Method of Small Unmanned Aerial Vehicles for Collision Avoidance (소형 무인비행체에서의 충돌회피를 위한 비행경로 생성에 관한 연구)

  • Shin, Saebyuk;Kim, Jinbae;Kim, Shin-Dug;Kim, Cheong Ghil
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.76-80
    • /
    • 2017
  • With the fast growing popularity of small UAVs (Unmanned Aerial Vehicles), recent UAV systems have been designed and utilized for the various field with their own specific purposes. UAVs are opening up many new opportunities in the fields of electronics, sensors, camera, and software for pilots. Increase in awareness and mission capabilities of UAVs are driving innovations and new applications driven with the help of low cost and its capability in undertaking high threat task. In particular, small unmanned aerial vehicles should fly in environments with high probability of unexpected sudden change or obstacle appearance in low altitude situations. In this paper, current researches regarding techniques of autonomous flight of smal UAV systems are introduced and we propose a draft idea for planning paths for small unmanned aerial vehicles in adversarial environments to arrive at the given target safely with low cost sensors.

A Study on Steady-State Performance Simulation of Smart UAV Propulsion System (신개념 비행체 추진시스템의 정상상태 성능모사 기법 연구)

  • 공창덕;강명철;기자영;양수석;이창호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, a performance model of the smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as well as the fixed wing mode for high speed forward flight, has been newly developed With the proposed model, steady-state performance analysis was performed at various flight modes such as rotary wing mode, fixed wing mode, compound ing mode and altitude as well as at flight speed conditions. In investigation of performance analysis. it was noted that the operational capability of the propulsion system was limited due to the duct losses depending on each flight mode, and the limitation with the altitude variation case had much greater than that with the flight speed variation case.

Use of unmanned aerial systems for communication and air mobility in Arctic region

  • Gennady V., Chechin;Valentin E., Kolesnichenko;Anton I., Selin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.525-536
    • /
    • 2022
  • The current state of telecommunications infrastructure in the Arctic does not allow providing a wide range of required services for people, businesses and other categories, which necessitates the use of non-traditional approaches to its organization. The paper proposes an innovative approach to building a combined communication network based on tethered high-altitude platform station (HAPS) located at an altitude of 1-7 km and connected via radio channels with terrestrial and satellite communication networks. Network configuration and composition of telecommunication equipment placed on HAPS and located on the terrestrial and satellite segment of the network was justified. The availability of modern equipment and the distributed structure of such an integrated network will allow, unlike existing networks (Iridium, Gonets, etc.), to organize personal mobile communications, data transmission and broadband Internet up to 100 Mbps access for mobile and fixed subscribers, rapid transmission of information from Internet of Things (IoT) sensors and unmanned aerial vehicles (UAV). A substantiation of the possibility of achieving high network capacity in various paths is presented: inter-platform radio links, subscriber radio links, HAPS feeder lines - terrestrial network gateway, HAPS radio links - satellite retransmitter (SR), etc. The economic efficiency of the proposed solution is assessed.

Applicability Evaluation of Agricultural Subsidies Inspection Using Unmanned Aerial Vehicle (무인항공기를 이용한 직불제 이행점검 적용성 평가)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.29-37
    • /
    • 2016
  • Unmanned Aerial Vehicle (UAV) have several advantages over conventional remote sensing techniques. UAV can acquire high-resolution images quickly and repeatedly with a comparatively lower flight altitude i.e. 80~400 m nullifying the effect of extreme weather and cloud. This study discussed the use of low cost-effective UAV based remote sensing application in inspection of agricultural subsidy. The study area accrue $60.5km^2$ of Buljeong-myeon, Goesan-gun, Chungbuk in South Korea. UAV image acquired 25 times from July 25 to August 11, 2015 for 3 days. It is observed that almost 81.1 % (3,571 of 4,410 parcels) parcels are truthful whereas some parcels are incorrect or fraudulent. Surveying with UAV for agricultural subsidy instead of field stuff can reduce the required time as much as 64.8 % (19 of 54 days). Therefore, it can contribute significantly in speedy and more accurate processing of grant application and can end unfair receipt of the grant which in turn will improve customer satisfaction.

Crops Classification Using Imagery of Unmanned Aerial Vehicle (UAV) (무인비행기 (UAV) 영상을 이용한 농작물 분류)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.91-97
    • /
    • 2015
  • The Unmanned Aerial Vehicles (UAVs) have several advantages over conventional RS techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude i.e. 80~400 m, they can obtain good quality images even in cloudy weather. Therefore, they are ideal for acquiring spatial data in cases of small agricultural field with mixed crop, abundant in South Korea. This paper discuss the use of low cost UAV based remote sensing for classifying crops. The study area, Gochang is produced by several crops such as red pepper, radish, Chinese cabbage, rubus coreanus, welsh onion, bean in South Korea. This study acquired images using fixed wing UAV on September 23, 2014. An object-based technique is used for classification of crops. The results showed that scale 250, shape 0.1, color 0.9, compactness 0.5 and smoothness 0.5 were the optimum parameter values in image segmentation. As a result, the kappa coefficient was 0.82 and the overall accuracy of classification was 85.0 %. The result of the present study validate our attempts for crop classification using high resolution UAV image as well as established the possibility of using such remote sensing techniques widely to resolve the difficulty of remote sensing data acquisition in agricultural sector.

An obstacle avoidance system of an unmanned aerial vehicle using a laser range finder

  • Kim, Hyun;Miwa, Masafumi;Shim, Joonhwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.737-742
    • /
    • 2013
  • Recently, unmanned aircrafts for safe measurement in hazardous locations have been developed. In a method of operation of unmanned aircraft vehicles (UAV), there are two methods of manual control and automatic control. Small UAVs are used for low altitude surveillance flights where unknown obstacles can be encountered. Obstacle avoidance is one of the most challenging tasks which the UAV has to perform with high level of accuracy. In this study, we used a laser range finder as an obstacle detector in automatic navigation of unmanned aircraft to patrol the destination automatically. We proposed a system to avoid obstacles automatically by measuring the angle and distance of the obstacle using the laser range finder.

Steady State Operational Characteristic Analysis of the Propulsion System for the Canard Rotor Wing UAV in three different Flight Modes (비행 모드에 따른 CRW UAV 추진시스템의 정상상태 운전특성 해석)

  • 공창덕;강명철;기자영;박종하;양수석;전용민
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.215-218
    • /
    • 2003
  • In this study, a performance model of the Smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as well as the fixed wing mode for high speed forward flight, has been newly developed. With the proposed model, steady-state performance analysis was performed at various flight modes and conditions, such as rotary wing mode, fixed wing mode, compound wing, mode altitude and flight speed.

  • PDF

A Study on Pedestrians Tracking using Low Altitude UAV (저고도 무인항공기를 이용한 보행자 추적에 관한 연구)

  • Seo, Chang Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.227-232
    • /
    • 2018
  • In this paper, we propose a faster object detection and tracking method using Deep Learning, UAV(unmanned aerial vehicle), Kalman filter and YOLO(You Only Look Once)v3 algorithms. The performance of the object tracking system is decided by the performance and the accuracy of object detecting and tracking algorithms. So we applied to the YOLOv3 algorithm which is the best detection algorithm now at our proposed detecting system and also used the Kalman Filter algorithm that uses a variable detection area as the tracking system. In the experiment result, we could find the proposed system is an excellent result more than a fixed area detection system.