• 제목/요약/키워드: Low Wind

검색결과 1,598건 처리시간 0.024초

Open-jet boundary-layer processes for aerodynamic testing of low-rise buildings

  • Gol-Zaroudi, Hamzeh;Aly, Aly-Mousaad
    • Wind and Structures
    • /
    • 제25권3호
    • /
    • pp.233-259
    • /
    • 2017
  • Investigations on simulated near-surface atmospheric boundary layer (ABL) in an open-jet facility are carried out by conducting experimental tests on small-scale models of low-rise buildings. The objectives of the current study are: (1) to determine the optimal location of test buildings from the exit of the open-jet facility, and (2) to investigate the scale effect on the aerodynamic pressure characteristics. Based on the results, the newly built open-jet facility is well capable of producing mean wind speed and turbulence profiles representing open-terrain conditions. The results show that the proximity of the test model to the open-jet governs the length of the separation bubble as well as the peak roof pressures. However, test models placed at a horizontal distance of 2.5H (H is height of the wind field) from the exit of the open-jet, with a width that is half the width of the wind field and a length of 1H, have consistent mean and peak pressure coefficients when compared with available results from wind tunnel testing. In addition, testing models with as large as 16% blockage ratio is feasible within the open-jet facility. This reveals the importance of open-jet facilities as a robust tool to alleviate the scale restrictions involved in physical investigations of flow pattern around civil engineering structures. The results and findings of this study are useful for putting forward recommendations and guidelines for testing protocols at open-jet facilities, eventually helping the progress of enhanced standard provisions on the design of low-rise buildings for wind.

풍력발전시스템에 연계된 저압수용가의 전압품질 분석 (Voltage Quality Analysis of Low Voltage Customer Connected to the Wind Generation System)

  • 김문찬;김현종;김태익;양익준;나경윤;김세호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.233-235
    • /
    • 2004
  • Operation of wind turbines has impacts on the voltage quantity at the connected electricity network. Increasing penetration of wind energy makes necessary to study the power quality regarding voltage variations(sag, swell, interruption) and presence of harmonics in the id. This paper investigates the voltage quality of low voltage customers connected to wind generation system. To study the influences of wind power generation to low voltage power system, voltage data are collected in three house using PQM(Power Quality Monitoring) equipment during one month and analyzed regarding voltage variation and harmonics

  • PDF

Effect of taper on fundamental aeroelastic behaviors of super-tall buildings

  • Kim, Yong Chul;Tamura, Yukio;Yoon, Sung-Won
    • Wind and Structures
    • /
    • 제20권4호
    • /
    • pp.527-548
    • /
    • 2015
  • Aeroelastic wind tunnel experiments were conducted for conventional and tapered super-tall building models to investigate the effect of taper on fundamental aeroelastic behaviors in various incident flows. Three incident flows were simulated: a turbulent boundary-layer flow representing urban area; a low-turbulent flow; and a grid-generated flow. Results were summarized focusing on the effect of taper and the effect of incident flows. The suppression of responses by introducing taper was profound in the low-turbulence flow and boundary-layer flow, but in the grid-generated flow, the response becomes larger than that of the square model when the wind is applied normal to the surface. The effects of taper and incident flows were clearly shown on the normalized responses, power spectra, stability diagrams and probability functions.

Analysis of light-frame, low-rise buildings under simulated lateral wind loads

  • Fischer, C.;Kasal, B.
    • Wind and Structures
    • /
    • 제12권2호
    • /
    • pp.89-101
    • /
    • 2009
  • The Monte Carlo procedure was used to simulate wind load effects on a light-frame low-rise structure of irregular shape and a main wind force resisting system. Two analytical models were studied: rigid-beam and rigid-plate models. The models assumed that roof diaphragms were rigid beam or rigid plate and shear walls controlled system behavior and failure. The parameters defining wall stiffness, including imperfections, were random and included wall stiffness, wall capacity and yield displacements. The effect of openings was included in the simulation via a set of discrete multipliers with uniform distribution. One and two-story buildings were analyzed and the models can be expanded into multiple-floor structures provided that the assumptions made in this paper are not violated.

와류이탈 위상차를 이용한 사보니우스형 풍력터빈의 소음 저감 설계에 관한 수치적 연구 (Numerical analysis on the low noise designs of Savonius wind turbines by using phase difference in vortex shedding)

  • 김상현;정철웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.166-171
    • /
    • 2013
  • In this study, low noise designs of a Savonius wind turbines are numerically investigated. From a previous study, it was found that the high harmonic components whose fundamental frequency is higher than the BPF were found to be dominant in noise spectrum of a Savonius wind turbine. On a basis of this observation, S-shaped blade tip is proposed as a low design factors that decrease wind turbine noise by inducing phase differences in vortex shedding. The conventional Savonius and S-shaped turbines are investigated using Hybrid CAA method where flow field around the turbine are computed using CFD techniques and the radiated noise are predicted by applying acoustic analogy to the computed flow data. Noise reductions by these design factors are confirmed by comparing the predicted noise levels from these turbines.

  • PDF

Aerodynamic analysis of cambered blade H-Darrieus rotor in low wind velocity using CFD

  • Sengupta, Anal Ranjan;Biswas, Agnimitra;Gupta, Rajat
    • Wind and Structures
    • /
    • 제33권6호
    • /
    • pp.471-480
    • /
    • 2021
  • This present paper leads to investigation of blade-fluid interactions of cambered blade H-Darrieus rotor having EN0005 airfoil blades using comprehensive Computational Fluid Dynamics (CFD) analysis to understand its performance in low wind streams. For several blade azimuthal angle positions, the effects of three different low wind speeds are studied regarding their influence on the blade-fluid interactions of the EN0005 blade rotor. In the prevailing studies by various researchers, such CFD analysis of H-Darrieus rotors are very less, hence it is needed to improve their steady-state performance in low wind velocities. Such a study is also important to obtain important performance insights of such thin cambered blade rotor in its complete rotational cycle. It has been seen that the vortex generated at the suction side of the EN0005 blade rolls back to its leading edge due to the camber of the blade and thus a peak velocity occurs near to the nose position of this blade at its leading edge, which leads to peak performance of this rotor. Again, in the returning phase of the blade, a secondary recirculating vortex is generated that acts on the pressure side of EN0005 blade rotor that increases the performance of this cambered EN0005 blade rotor in its downstream position as well. Here, the aerodynamic performances have been compared considering Standard k-ε and SST k-ω models to check the better suited turbulence model for the cambered EN0005 blade H-Darrieus rotor in low tip speed ratios.

농촌 그린빌리지 계획을 위한 풍력에너지 자원분석 (Assessment of Wind Power Resources for Rural Green-village Planning)

  • 남상운;김대식
    • 농촌계획
    • /
    • 제14권2호
    • /
    • pp.25-32
    • /
    • 2008
  • Wind energy, which is one of renewable energy, would be useful resources that can be applied to making energy recycling villages without using fossil fuels. This study analyzed energy potential on wind power considering weather condition in three rural villages and compared with energy consumption surveyed. A wind turbine system in the 5kW class can generate 26.1%, 73.9% and 39.5% of the yearly mean consumption of electric power per house in Makhyun, Boojang and Soso respectively. A 750kW wind turbine system can generate 1.7%, 30.3% and 22.1% of the total amount of electric power consumption in three study villages respectively. Wind power energy density was too low in Makhyun and Soso, so it is determined that the application of wind turbine system is almost impossible. Wind energy potential was generally low in Boojang either, but it is evaluated that there is a little possibility of wind power generation relatively. For practical application of renewable energy to rural green-village planning, assessment of energy potential for the local area should be preceded.

Flexible Transmission Expansion Planning for Integrating Wind Power Based on Wind Power Distribution Characteristics

  • Wang, Jianxue;Wang, Ruogu;Zeng, Pingliang;You, Shutang;Li, Yunhao;Zhang, Yao
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.709-718
    • /
    • 2015
  • Traditional transmission planning usually caters for rated wind power output. Due to the low occurrence probability of nominal capacity of wind power and huge investment in transmission, these planning methods will leads to low utilization rates of transmission lines and poor economic efficiency. This paper provides a novel transmission expansion planning method for integrating large-scale wind power. The wind power distribution characteristics of large-scale wind power output and its impact on transmission planning are analyzed. Based on the wind power distribution characteristics, this paper proposes a flexible and economic transmission planning model which saves substantial transmission investment through spilling a small amount of peak output of wind power. A methodology based on Benders decomposition is used to solve the model. The applicability and effectiveness of the model and algorithm are verified through a numerical case.

소형 수직축 풍력발전기 풍동실험시 폐쇄율의 영향 (Effect of Blockage Ratio on Wind Tunnel Testing of Small Vertical-Axis Wind Turbines)

  • 정회갑;이승호;권순덕
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.98-106
    • /
    • 2014
  • The effect of blockage ratio on wind tunnel testing of small vertical-axis wind turbine has been investigated in this study. Height and rotor diameter of the three blades Darrieus vertical axis wind turbine used in present test were 0.4m and 0.35m respectively. We measured the wind speeds and power coefficient at three different wind tunnels where blockage ratio were 3.5%, 13.4% and 24.7% respectively. The test results show that the measured powers have been strongly influenced by blockage ratio, generally increased as the blockage ratio increases. The maximum power at higher blockage ratio has been obtained at relatively high tip speed ratio compared with that at low blockage ratio. The measured power coefficients under high blockage ratio can be improved from proper correction using the simple correction equation based on blockage factor. In present study, the correction error for power coefficient can be less than 5%, however correction effectiveness reveals relatively poor at high blockage ratio and low wind speed.

Review of international wind codes and recent research on mono-slope canopy roof

  • Pratap, Ajay;Rani, Neelam
    • Wind and Structures
    • /
    • 제34권4호
    • /
    • pp.371-383
    • /
    • 2022
  • Buildings with mono-sloped roofs are used for different purposes like at railway platforms, restaurants, industrial buildings, etc. Between two types of mono-slope roofs, clad and unclad, unclad canopy types are more vulnerable to wind load as wind produces pressure on both upper and lower surfaces of the roof, resulting in uplifting of the roof surface. This paper discusses the provisions of wind loads in different codes and standards for Low-rise buildings. Further, the pressure coefficients on mono-slope canopy roof available in wind code and standards are compared. Previous experimental studies for mono-slope canopy roof along with the recent wind tunnel testing carried out at Indian Institute of Technology, Roorkee is briefly discussed and compared with the available wind codes. From the study it can further be asserted that the information available related to staging or blocking under the mono-slope canopy roofs is limited. This paper is an attempt to put together the available information in different wind codes/standards and the research works carried out by different researchers, along with shedding some light on the future scopes of research on mono-slope canopy roofs.