• Title/Summary/Keyword: Low Water-High Rice Field Type

Search Result 5, Processing Time 0.022 seconds

A Study on Efficiency of Water Purification of Korean Village Bangjuk[dike] as a Means of Ecological Watershed Management (생태적 유역관리 도구로써 마을방죽의 수질정화 효율성 고찰)

  • An, Byung-Chul
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.90-100
    • /
    • 2012
  • This study centering on 10 village - Bangjuks analyzed multifunctionality value of village Bangjuks which have been main water treatment system in Korean traditional villages. On the basis of understanding the structure and character of components such as the well, common spring, village waterway and others which making water-flow and consisting of aquatic system in Korean traditional village Bangjuk, the conclusion as the instrumental device of social and ecological role and ecological watershed management, securing the ecosystem soundness of the damaged or deteriated aquatic ecosystem due to the industrialization and urbanization is as below; 1. The traditional village Bangjuk was environmentally friendly hydraulic system which gathers waterways of village into a point including sewage water, retains and flows out to village through agricultural waterway. Through this Bangjuk, they have managed sewage and rainfall runoff flowed out village efficiently. It is not only a detention system of water but a kind of eco-friendly system that flow out water into the rivers after reusing and filtering it. 2. Around five traditional villages and five villages after modernization, this study classified the types of village Bangjuk as three types considering geographic location, size, etc; marsh type of low swamp, high water -low rice field type of natural flow stucture, low water - high rice field type requiring artificial irrigation facility. All the five traditional villages were turned out to be marsh type of low swamp. Geoji, Sanjeri, Ma-am, Yangchon of the agricultural villages were high water-low rice filed type, and Sangchoenri village was classified low water-high rice field type. 3. This study checked up the function of water purification of village Bangjuk. In Wonteo and Geji villages affected by discharge of village sewer and domestic sewage, the efficiency of ammonia nitrogen($NH_3-N$) and total phosphorus(T-P) was 56~95%, which was high. In Sangcheonri and Sanjeri villages strongly affected by stall and farmland, the efficiency of suspended solids(SS) was 70~85%, and that of total nitrogen(T-N) and total phosphorus(T-P) was 5.3~65%. 4. A water purification system can be found out in the system of village Bangjuk that filter out village sewage and rainfall runoff flowed through the settle and filter of pollution source and denitrification of plants. Through this system of village Bangjuk, it must be used as the basic facilities for the ecological watershed management. The sewage management system of village Bangjuk as a eco-filter must be used and studied as an eco-friendly facility for the ecological watershed management around the subwatershed and catchment.

Cold Tolerance Characteristic Test of High Yield Tongil-type Rice Breeding Lines for Processing

  • Kang-Su Kwak;Sea-Kwan Oh;Kuk-Hyun Jung;Dae-Ha Seo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.278-278
    • /
    • 2022
  • Recently, the yield potential of high yield Tongil-type rice varieties has greatly increased, reaching 817kg/10a(Geumgang No.1). Moreover, in order to promote rice consumption and strengthen the competitiveness of the rice processing industry, the R&D of high yield Tongil-type rice varieties for each processing purpose, such as rice noodles, grain feed and industrial materials, has been continuously carried out. However, because Tongil-type rice varieties or lines are generally very vulnerable to cold damage, cold tolerance test can be said to be absolutely necessary to improve the cultivation safety. This study is the result of the seedling and field cold tolerance characteristic tests carried out in 2021 of high yield Tongil-type rice breeding lines. For the cold tolerance characteristic test of seedlings, total 303 high yield rice breeding lines for processing were treated in cold water of 13℃ and irrigation depth of 4cm for 10 days from the third-leaf age, then it was evaluated by comparing the degree of discoloration and withering with the checked varieties(Boramchan, Hanahreum No.2). Also, for the test of field, total 186 high yield rice breeding lines for processing were treated in cold water of 17℃ by keeping pouring day and night from 30 days after transplanting to ripening stage, then it was evaluated by comparing the degree of discoloration, delay of heading, shortening rate of stem length and percent of fertile grain etc. with the checked varieties. And the cold tolerance evaluative criteria were classified as strong(1~3), medium(4~6) and weak(7~9) in overall cold tolerance. (Seedling test) As for the degree of cold tolerance of the check variety, 'Boramchan' and 'Hanahreum No.2' showed a response of 'medium' and 'weak', respectively. However, there was no 'strong' line in the high yield rice breeding lines, 2 lines showed a 'medium' response, and 301 lines showed a 'weak' response. Therefore, except for a few lines(0.7%), most lines(99.3%) showed a 'weak' response. (Field test) In terms of the overall cold tolerance of the check variety, both 'Boramchan' and 'Hanahreum No.2' showed a 'medium' response. Similarly, there was no 'strong' line in the case of high yield rice breeding lines, 20 lines showed a 'medium' response, and 166 lines showed a 'weak' response. Therefore, except for some(10.8%) lines, most(89.2%) lines showed a 'weak' response. From the above results, we selected about 100 individuals with less seed shattering and degeneration of the ear tip, and with a relatively high percent of fertile grain, and are continuing to select lines with improved cold tolerance in the F4~F5 group in this year. As such, most of the Tongil-type rice varieties have poor cold tolerance and thus have low cultivation safety at low temperatures. However, it is important to select improved lines through generational progress because there are some lines that still have a certain level of cold tolerance among them.

  • PDF

Automatic Calibration of Stream Flow and Nutrients Loads Using HSPF-PEST at the Bochung A Watershed (보청A유역 유량 및 영양물질 자동보정을 위한 HSPF-PEST 연계적용)

  • Jeon, Ji-Hong;Choi, Dong-Hyuk;Lim, Kyung-Jae;Kim, Tae-Dong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.77-86
    • /
    • 2010
  • Hydrologic Simulation Program-Fortran (HSPF) coupled with PEST which is optimization program was calibrated and validated at Bochung watershed by using monitoring data of water quantities and nutrient loading. Although the calibrated data were limited, model parameters of each land use type were optimized and coefficient of determinations were ranged from 0.94 to 0.99 for runoff, from 0.89 to 1.00 for TN loading, and from 0.92 to 1.00 for TP loading. The optimized hydrological parameters indicated that the forested land could retain rainfall within soil layer with high soil layer depth and infiltration rate compared with other land use type. Hydrological characteristics of paddy rice field are low infiltration rate and coefficient of roughness. The calibrated parameters related to nutrient loading indicated generation of nutrient pollution from agricultural area including upland and paddy rice field higher than other land use type resulting from fertilizer application. Overall PEST program is useful tool to calibrate HSPF automatically without consuming time and efforts.

Improvement of Abiotic Stress Resilience for Stable Rice Production

  • Dongjin Shin;Hyunggon Mang;Jiyun Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.13-13
    • /
    • 2022
  • Recently, stable crop production is threatened by the effects of climate change. In particular, it is difficult to consistently maintain agricultural policies due to large price fluctuations depending on the difference in total domestic rice production from year to year. For stable rice production amid changes in the crop growing environment, development of varieties with improved disease resistance and abiotic stress stability is becoming more important. In here, drought and cold tolerant trait have been studied. First, for the development of drought tolerant varieties, we analyzed which agricultural traits are mainly affected by domestic drought conditions. As a result, it was observed that drought caused by the lack of water during transplanting season inhibits the development of the number of tiller and reduces the yield. 'Samgang' was selected as a useful genetic resource with strong drought tolerant and stable tiller number development even under drought conditions by phenotype screening. Three of drought tolerant QTLs were identified using doubled haploid (DH) population derived from a cross between Nacdong and Samgang, a drought sensitive and a tolerant, respectively. Among these QTLs, when qVDT2 and qVDTl1 were integrated, it was investigated that the tiller number development was relatively stable in the rainfed paddy field conditions. It is known that the high-yielding Tongil-type cultivars are severely affected by cold stress throughout the entire growth stage. In this study, we established conditions that can test the cold tolerance phenotype with alternate temperature to treat low temperatures in indoor growth conditions similar to those in field conditions at seedling stage. Three cold tolerant QTLs were explored using population derived from a cross between Hanareum2 (cold sensitive variety, Tongil-type) and Unkwang (cold tolerant variety, Japonica). Among these QTLs, qSCT12 showed strong cold tolerant phenotype, and when all of three QTLs were integrated, it was investigated that cold tolerant score was relatively similar to its donor parent, Unkwang, in our experimental conditions. We are performing that development of new variety with improved cold tolerant through the introduction of these QTLs.

  • PDF

Wind and Flooding Damages of Rice Plants in Korea (한국의 도작과 풍수해)

  • 강양순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.45-65
    • /
    • 1989
  • The Korean peninsular having the complexity of the photography and variability of climate is located within passing area of a lots of typhoon occurring from the southern islands of Philippines. So, there are various patterns of wind and flooding damages in paddy field occuring by the strong wind and the heavy rain concentrated during the summer season of rice growing period in Korea. The wind damages to rice plants in Korea were mainly caused by saline wind, dry wind and strong wind when typhoon occurred. The saline wind damage having symptom of white head or dried leaves occurred by 1.1 to 17.2 mg of salt per dry weight stuck on the plant which was located at 2. 5km away from seashore of southern coastal area during the period(from 27th to 29th, August, 1986) of typhoon &Vera& accompanying 62-96% of relative humidity, more than 6 m per second of wind velocity and 22.5 to 26.4$^{\circ}C$ of air temperature without rain. Most of the typhoons accompanying 4.0 to 8. 5m per second of wind and low humidity (lesp an 60%) with high temperature in the east coastal area and southen area of Korea. were changed to dry and hot wind by the foehn phenomenon. The dry wind damages with the symptom of the white head or the discolored brownish grain occurred at the rice heading stage. The strong wind caused the severe damages such as the broken leaves, cut-leaves and dried leaves before heading stage, lodging and shattering of grain at ripening stage mechanically during typhoon. To reduce the wind damages to rice plant, cultivation of resistant varieties to wind damages such as Sangpoongbyeo and Cheongcheongbyeo and the escape of heading stage during period of typhoon by accelerating of heading within 15th, August are effective. Though the flood disasters to rice plant such as earring away of field, burying of field, submerging and lodging damage are getting low by the construction of dam for multiple purpose and river bank, they are occasionally occurred by the regional heavy rain and water filled out in bank around the river. Paddy field were submerged for 2 to 4 days when typhoon and heavy rain occurred about the end of August. At this time, the rice plants that was in younger growing stage in the late transplanting field of southern area of Korea had the severe damages. Although panicles of rice plant which was in the meiotic growing stage and heading stage were died when flooded, they had 66% of yield compensating ability by the upper tilling panicle produced from tiller with dead panicle in ordinary transplanting paddy field. It is effective for reduction of flooding damages to cultivate the resistant variety to flooding having the resistance to bacterial leaf blight, lodging and small brown planthopper simultaneously. Especially, Tongil type rice varieties are relatively resistant to flooding, compared to Japonica rice varieties. Tongil type rice varieties had high survivals, low elongation ability of leaf sheath and blade, high recovering ability by the high root activity and photosynthesis and high yield compensating ability by the upper tillering panicle when flooded. To minimize the flooding and wind damage to rice plants in future, following research have to be carried out; 1. Data analysis by telemetering and computerization of climate, actual conditions and growing diagnosis of crops damaged by disasters. 2. Development of tolerant varieties to poor natural conditions related to flooding and wind damages. 3. Improvement of the reasonable cropping system by introduction of other crops compensating the loss of the damaged rice. 4. Increament of utilization of rice plant which was damaged.

  • PDF