• Title/Summary/Keyword: Low Temperature Cutting

Search Result 115, Processing Time 0.022 seconds

난삭재의 저온절삭에서의 절삭특성에 관한 연구

  • 김칠수;오선세;임영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.89-93
    • /
    • 1992
  • We experimented cutting characteristics-cutting force, behavior of chip, surface roughness-under low temperature, which generated by liquid nitrogen(77K). The results obtained are as follows; 1) The workpice is became to-195 .deg. C in 5, minutes, and in cooled cutting, cutting force bycooled workpices is stronger than normal temperature condition. Chip thickness is decreasing comparative toN.C and shear angle in shear plane is in creasing. 2) Chip formation becomes long or short tubular chips in turning SXM440, SNCM21 steel, when cutting speed is low and cutting temperatre is cooled condition, but in the STS304 steel the variation of c formations isn't known to. 3) In C.C, surface roughness of workpices is better than N.C and found to make more the crat wearthan N.C 4) It is possible to detect the behavior of chip by monitoring the maximum amplitude of gai value of cutting force.

A Study on the Cutting Characteristics of SCM440, SNCM21, STS 304 in Cryogenic Cutting(1st Report) (난삭재의 극저온절삭에서의 절삭 특성에 관한 연구)

  • Kim, Chill-Su;Oh, Sun-Sae;Lim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.44-53
    • /
    • 1994
  • We experimented on cutting characteristics-cutting force, behavior of cutting temprature, surface foughness, behavior of chips-under low tempdeature, which generated by liquid nitrogen (77K). The workpieces were freezed to -195 .deg. C and liquid nitrogen was also sprinkled on cutting area in order to increase the efficiency of machining in low temperature. The workpiece was became to -195 .deg. C in 5 minutes, and cutting temperature in CC was lower about 170 .deg. C than NC. The cutting force trended to increase slighty in cooled cutting, but chip thickness was decreased, shear angle was however increased. The form of chips was in good conditions of long or short tubular chips in CC. In CC surface roughness of workpiece was better than NC. In NC surface hardness of chips trended to increase according to increasing of cutting speed, but in CC it trended to decrease. The power spectrum of vertical cutting force trended to increase according to increasing of feed, and in CC it was higher than NC.

  • PDF

Temperature analysis of each coolant level in turning by a multiple comparison (다중비교를 이용한 선삭가공시 절삭유량에 따른 온도변화분석)

  • 박태준;양승한;이영문;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1033-1036
    • /
    • 2001
  • The object of this paper is to find out a coolant level, which is economic and similar to the conventional level, high level, in cutting temperature. For this, new coolant level, called a low level, was proposed, which is about 1/4 of conventional level. And the cutting temperature of each coolant level in turning was analyzed using statistical method. Firstly, it was analyzed that the temperature mean of each coolant level is not equal by ANOVA-test. Secondly by Tukey's HSD, one of multiple comparisons, it was analyzed that the temperature mean of low level is similar to that of high level and different from that of none level.

  • PDF

Enhancement of Wear Resistance by Low Heat Treatment and the Plasma Source Ion Implantation of Tungsten Carbide Tool (초경 엔드밀의 플라즈마 이온 주입과 저온 열처리를 통한 내마멸성 향상)

  • Kang, Seong-Ki;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.162-168
    • /
    • 2011
  • In this research, nitrogen plasma source ion implantation(PSII) of non-coated tungsten carbide endmill tools was conducted with low heat treatment for increasing wear resistance. After the low heat treatment of PSIIed tools to give a homogeneity of wear resistance, the surface modification of tools was analyzed by hardness test, surface roughness and cutting forces. As for the resultant cutting forces, low heat treatment in temperature of $400^{\circ}C$ and $500^{\circ}C$ is stable because of low cutting resistance. The 20-minutes heat treated tool at spindle speed 25000rpm has superiority of surface roughness, Ra of $0.420{\mu}m$ and was found to have good wear resistance. The higher hardness value was obtained by increasing temperature from $300^{\circ}C$ to $600^{\circ}C$ for PSIIed tools with low heat treatment. As the PSIIed tools under 10minutes at temperature of $600^{\circ}C$ have the highest hardness as Hv of 2349.8, It was analyzed that temperature processing give much influences on hardness.

High Speed Milling of Titanium Alloy (Ti 합금의 고속가공시 밀링특성에 관한 연구)

  • Chen, Ming;Lee, Young-Moon;Yang, Seung-Han;Jang, Seung-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.34-39
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. The chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number of shear ribbons and bigger shear angle than that at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability mot depression of temperature increment anti-fatigability as well as surface roughness. The burrs always exist both at low cutting speed and at high cutting speed. So the deburring process should be arranged for milling titanium alloy in my case.

Effects of Weather Conditions on Sunburn in Stalk Curing of Burley Tobacco

  • Bae, Seong Kook;Jo, Chun Joon
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.2
    • /
    • pp.138-142
    • /
    • 2000
  • The effects of stalk cutting time and environmental factors such as air temperature, leaf temperature, solar radiation and leaf moisture content during harvesting and curing in burley tobacco(Nicotiana tabacum L.) on weight loss of fresh stalks and sunburning in leaves were investigated at Chonju Experiment Station, Korea Ginseng & Tobacco Research Institute in 1996 and 1997. Twelve to fifteen percent of the fresh weight was lost in 3 to 4 hours after stalk-cutting, and sunburned leaves could be observed in case of stalk cutting between 11:00 and 15:00 O'clock on a clear sunny day, when the air temperature was 34 to 35$^{\circ}C$, leaf temperature 52 to 54$^{\circ}C$, and solar radiation 700 to 940 w/$m^2$. The leaves exposed to this weather condition were sunburned within 1 hour after stalk cutting. But low temperature (below $25^{\circ}C$) with high solar radiation(above 700w/m2) or high temperature(above 3$0^{\circ}C$) with low solar radiation (below 600w$m^2$) did not induce the sunburn damage in leaves. As the leaf temperature and leaf moisture content were higher, the sunburned leaves increased. The leaves at the higher stalk position were more easily sunburned than those at the lower. This result indicates that the immature leaves with higher chlorophyll content might be more susceptible to sunburning.

  • PDF

Machinability of Pre-sintered Alumina Ceramics (알루미나 세라믹 가소결재의 피삭성 -다이아몬드 및 CBN공구의 절삭 성능-)

  • 김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.41-46
    • /
    • 1996
  • In this study, unsintered and pre-sintered low purity alumina ceramics were machined with various tools to clarify the machinability, optimum tool materials and optimum cutting conditions. The main conclusions obtained were as follows. (1)In the case of dry cutting, the sintered diamond and natural diamond tools exhibit better performance in machining of the ceramic pre-sintered at lower temperature, and the tool lives of both tools in machining the ceramics pre-sintered at high temperature becomes extremely short. (2)The performance of CBN tool becomes better in dry machining of the ceramics pre-sintered at higher temperature. (3)When the pre-sintered ceramics were wet machined with sintered diamond, the tool life becomes considerably long, and higher cutting speed can be used than in the case of the CBN and ceramic tools, the tool lives becomes shorter at wet cutting than at dry cutting, especially exhibiting extremely short tool life in wet cutting with ceramic tool.

  • PDF

A Study on the Surface Grinding Temperature Characteristics of the Carbon Fiber Epoxy Composite Materials (탄소섬유 에폭시 복합재료의 평면 연삭온도 특성에 관한 연구)

  • 한흥삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.441-446
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composited. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite plain grinding were suggested.

  • PDF

Effect of Cutting Condition on the Tool Wear in Turning of the Presintered Low Purity Alumina Ceramics (저순도 알루미나 세라믹 예비소결체의 선삭에서 공구 마멸에 미치는 절삭 조건의 영향)

  • Lee, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.14-21
    • /
    • 2010
  • In this study, presintered low purity alumina ceramics were machined with various tools to clarify the effects of the tool material, cutting condition and tool geometry on machinability. The main conclusions obtained were as follows. (a)The wear of tungsten carbide tool becomes smaller with the increase of the feed and clearance angle, and with the decrease of rake angle, especially exhibiting considerably smaller wear with both the decrease of rake angle and the increase of clearance angle. (b) So far as turning the ceramic presintered at low temperature, the diamond tool shows the best performance with higher feed. (c) The effect on the tool wear of the feed, clearance angle and rake angle becomes smaller in turning the ceramic presintered at higher temperature. (d) The tool wear is not severely affected by the depth of cut.

A study on development of plasma-arc cutting system with computer-numerical control (컴퓨터수치제어(CNC) 플라즈마 아아크 절단장치 개발에 관한 연구)

  • 노태정;나석주;나규환
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.60-69
    • /
    • 1990
  • Plasma arc cutting is a fusion cutting process in which a gas-constricted arc is employed to produce a high-temperature, high-velocity plasma jet on the workpiece. This process provides some advantages such as increased cutting velocity, excellent working accuracy and the ability to cut special materials (widely used stainless steels and Al-alloys, for example), when compared with iconventional oxyfuel gas cutting. From the view point of price and reliability of the power source, plasma arc cutting has also some distinct advantages over laser beam cutting. High-speed machines with NC or CNC systems are needed for the plasma arc or laser beam cutting process, while for oxyfuel gas cutting, low-speed machines with copying templates or optical-shape tracking sensors can be applied. The low price and high flexibility of the microprocessor arc contributing more and more the application of CNC system in the plasma arc cutting process, as in other manufacturing fields. From these points of view, a microprocessor-based plasma arc cutting system was developed by using a reference-pulse system, and its performance was tested. The interpolating routines were programmed in the assembly language for saving the memory volume and improving the compouting speed, which has an intimate relationship with the available cutting velocity.

  • PDF