• Title/Summary/Keyword: Low Switching Frequency

Search Result 644, Processing Time 0.02 seconds

Study on intense pulse lighting with high efficiency (고효율의 Intese Pulse Light에 특성연구)

  • Kim, Whi Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.333-336
    • /
    • 2009
  • the equipment increase switching frequency in order to achieve small size, a low noise, and light weight. however, the power switches have high power losses and switching stresses as the switching frequency is increased. In order to solve like this problem point from the present paper it proposed Intese Pulse Light of the half bridge methods which apply the start current circuit which applies the auxiliary equipment. Simulation and experimental result it leads and it brings is more qualitative there is 20% improvement and it confirmed that a possibility of measuring to the patient.

  • PDF

A Study on the Output Noise Reduction of 3-Phase Multilevel Inverter (3상 멀티레벨 인버터 출력노이즈 저감에 관한 연구)

  • Kim, Soo-Hong;Jin, Kang-Hwan;Kin, Yoon-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.101-103
    • /
    • 2007
  • Since they use the low switching frequency in multilevel inverter systems, they generate the high low frequency harmonic components. Generally, LC filter is used at the output terminal of inverter systems to solve this problem. But it causes a voltage drop at the output terminal by use of damping resistors, and causes the problem in which system efficiency decreases due to power loss of the damping resistor. In this paper, we proposed an output filter design method for NPC three-level inverter systems with low switching frequency. And we analyzed the efficiency of the proposed filter system, and the effectiveness of the proposed system is verified by simulation and experimental results.

  • PDF

High Power Buck-boost DC-DC Converter of Soft Switching for Photovoltaic Power Generation (태양광 발전을 위한 대용량 소프트 스위칭 승강압 DC-DC 컨버터)

  • 김영철;김재준;이종근;전중함;곽동걸;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.117-120
    • /
    • 1996
  • Power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. In this paper, the authors propose a DC-DC boost converter of high power by partial resonant switch method (PRSM). The switching devices in a proposed circuit are operated with soft switching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. Also the circuit has a merit which is taken to increase of efficiency, as it makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber in conventional circuit. The result is that the switching loss is very low and the efficiency of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Plasma Generation Method using PWM Control for Ash Process (반도체 Ash 공정용 PWM 제어 Plasma 발생방법)

  • Lee Joung-Ho;Choi Dae-Kyu;Choi Sang-Don;Lee Byoung-Kuk;Won Chung-Yuen;Kim Soo-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.470-474
    • /
    • 2006
  • This dissertation discuses about a ferrite core plasma source using low operating frequency without sputtering problem by the stored electric field. Compared with the conventional RF power system with 13.56MHz switching frequency, the proposed plasma power system is only separated at 400kHz, so that it makes possible to use of low cost switching elements, PWM control and soft switching. Moreover, it could improve the coupling efficiency for plasma and antenna by using the ferrite core in order to transfer the energy of the load This dissertation tried to analyze new plasma generation method for the plasma generation system by modeling the plasma load and grafting the concept of impedance matching in order to interpret it with the formula This dissertation verified the ferrite core inductive coupling plasma source authorized for 400kHz of low frequency power by applying to the semi-conductor ash process thru the measurement of ash capacity and uniformed plasma distribution on the actual wafer.

  • PDF

Improving the Solution Range in Selective Harmonic Mitigation Pulse Width Modulation Technique for Cascaded Multilevel Converters

  • Najjar, Mohammad;Iman-Eini, Hossein;Moeini, Amirhossein;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1186-1194
    • /
    • 2017
  • This paper proposes an improved low frequency Selective Harmonic Mitigation-PWM (SHM-PWM) technique. The proposed method mitigates the low order harmonics of the output voltage up to the $50^{th}$ harmonic well and satisfies the grid codes EN 50160 and CIGRE-WG 36-05. Using a modified criterion for the switching angles, the range of the modulation index for non-linear SHM equations is improved, without increasing the switching frequency of the CHB converter. Due to the low switching frequency of the CHB converter, mitigating the harmonics of the converter up to the $50^{th}$ order and finding a wider modulation index range, the size and cost of the passive filters can be significantly reduced with the proposed technique. Therefore, the proposed technique is more efficient than the conventional SHM-PWM. To verify the effectiveness of the proposed method, a 7-level Cascaded H-bridge (CHB) converter is utilized for the study. Simulation and experimental results confirm the validity of the above claims.

Increasing the Range of Modulation Indices with the Polarities of Cells and Switching Constraint Reliefs for the Selective Harmonic Elimination Pulse Width Modulation Technique

  • Najjar, Mohammad;Iman-Eini, Hossein;Moeini, Amirhossein
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.933-941
    • /
    • 2017
  • In this paper an improved low frequency selective harmonic elimination-PWM (SHE-PWM) technique for Cascaded H-bridge (CHB) converters is proposed. The proposed method is able to eliminate low order harmonics from the output voltage of the converter for a wide range of modulation indices. To solve SHE-PWM equations, especially for low modulation indices, a modified method is used which employs either the positive or negative voltage polarities of H-bridge cells to increase the freedom degrees of each cell. Freedom degrees of the switching angles are also used to increase the range of available solutions for non-linear SHE equations. The proposed SHE methods can successfully eliminate up to $25^{th}$ harmonic from a 7-level output voltage by using just nine switching transitions or a 150 Hz switching frequency. To confirm the validity of the proposed method, simulation and experimental results have been presented.

Multiple Decoupling Current Control Strategies for LCL Type Grid-Connected Converters Based on Complex Vectors under Low Switching Frequencies

  • Liu, Haiyuan;Shi, Yang;Guo, Yinan;Wang, Yingjie;Wang, Wenchao
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1034-1044
    • /
    • 2019
  • In medium-voltage and high-voltage high-power converters, the switching devices need to operate at a low switching frequency to reduce power loss and increase the power capacity. This increases the delay of the signal sampling and PWM. It also makes the cross-couplings of the d-q current components more severe. In addition, the LCL filter has three cross-coupling loops and is prone to resonance. In order to solve these problems, this paper establishes a complex vector model of an LCL type grid-connected converter. Based on this model, two multiple decoupling current control strategies with passive damping / notch damping are proposed for the LCL type grid-connected converter. The proposed strategies can effectively eliminate the cross-couplings of the converter, achieve independent control of the d-q current components, expand the stable region and suppress the resonance of the LCL filter. Simulation and experimental results verify the correctness of the theoretical analysis and the feasibility of the proposed strategies.

Zero Voltage Soft Switching PWM High-Frequency Inverter with Active Inductor Snubber for Induction Heated Roller in New Type Copy Machine

  • Muraoka S.;Feng Y.L.;Kunimoto H.;Chandhaket S.;Okuno A.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.75-79
    • /
    • 2001
  • This paper presents a novel version of an active voltage clamped ZVS-PWM high frequency inverter using IGBTs for electromagnetic induction eddy current-based rolling drum heating in new generation copy and printing machines in consumer business use. The operating principle of this inverter circuit and unique features are described herein. Its constant frequency duty cycle (asymmetrical PWM) controlled voltage source quasi-resonant soft switching high frequency inverter employing IGBTs is proposed, which is capable of achieving stable and efficient zero voltage soft switching commutation over a widely specified power regulation range from full power to low power. The operating performances in a steady state of this inverter is discussed and evaluated on basis of simulation and experimental results as an induction heated roller in new generation copy machine.

  • PDF

Modeling and Feedback Control of LLC Resonant Converters at High Switching Frequency

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.849-860
    • /
    • 2016
  • The high-switching-frequency operation of power converters can achieve high power density through size reduction of passive components, such as capacitors, inductors, and transformers. However, a small-output capacitor that has small capacitance and low effective series resistance changes the small-signal model of the converter power stage. Such a capacitor can make the converter unstable by increasing the crossover frequency in the transfer function of the small-signal model. In this paper, the design and implementation of a high-frequency LLC resonant converter are presented to verify the power density enhancement achieved by decreasing the size of passive components. The effect of small output capacitance is analyzed for stability by using a proper small-signal model of the LLC resonant converter. Finally, proper design methods of a feedback compensator are proposed to obtain a sufficient phase margin in the Bode plot of the loop gain of the converter for stable operation at 500 kHz switching frequency. A theoretical approach using MATLAB, a simulation approach using PSIM, and experimental results are presented to show the validity of the proposed analysis and design methods with 100 and 500 kHz prototype converters.

Influence of Parasitic Parameters on Switching Characteristics and Layout Design Considerations of SiC MOSFETs

  • Qin, Haihong;Ma, Ceyu;Zhu, Ziyue;Yan, Yangguang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1255-1267
    • /
    • 2018
  • Parasitic parameters have a larger influence on Silicon Carbide (SiC) devices with an increase of the switching frequency. This limits full utilization of the performance advantages of the low switching losses in high frequency applications. By combining a theoretical analysis with a experimental parametric study, a mathematic model considering the parasitic inductance and parasitic capacitance is developed for the basic switching circuit of a SiC MOSFET. The main factors affecting the switching characteristics are explored. Moreover, a fast-switching double pulse test platform is built to measure the individual influences of each parasitic parameters on the switching characteristics. In addition, guidelines are revealed through experimental results. Due to the limits of the practical layout in the high-speed switching circuits of SiC devices, the matching relations are developed and an optimized layout design method for the parasitic inductance is proposed under a constant length of the switching loop. The design criteria are concluded based on the impact of the parasitic parameters. This provides guidelines for layout design considerations of SiC-based high-speed switching circuits.