• Title/Summary/Keyword: Low Surface Tension

Search Result 201, Processing Time 0.028 seconds

DC Magnetron Sputtering of Cr/Cu/Cr Metal Electrodes for AC Plasma Display panel (DC Magnetron Sputtering 법에 의한 AC Plasma Display panel의 Cr/Cu/Cr 금속전극 제조)

  • 남대현;이경우;박종완
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.704-710
    • /
    • 2000
  • Metal electrode materials for plasma display panel should have low electrical resistivity in order to maintain stable gas discharge and have fast response time. They should also hae good film uniformity adhesion and thermal stability. In this study Cr/Cu/Cr metal electrode structure is formed by DC magnetron sputtering. Cr and Cu films were deposited on ITO coated glasses with various DC power density and main pressures as the major parameters. After metal electrodes were formed a heat treatment was followed at 55$0^{\circ}C$ for 20 min in a vacuum furnace. The intrinsic stress of the sputtered Cr film passed a tensile stress maximum decreased and then became compressive with further increasing DC power density. Also with increasing the main pressure stress turned from compression to tension. After heat the treatment the electrical resistivity of the sputtered Cu film of 2${\mu}{\textrm}{m}$ in thickness prepared at 1 motor with the applied power density of 3.70 W/cm$^2$was 2.68 $\mu$$\Omega$.cm With increasing the main pressure the DC magnetron sputtered Cu film became more open structure. The heat treatment decreased the surface roughness of the sputtered Cr/Cu/Cr metal electrodes.

  • PDF

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

Surfactant Replcement Therapy in Adult Respiratory Distress Syndrome (성인성 호흡곤란 증후군에 있어서 Surfactant 치료)

  • Park, Sung-Soo;Lee, Jung-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.91-97
    • /
    • 1993
  • Pulmonary surfactant is a lipoprotein complex composed primarily of phospholipid and lung specific apoproteins that reduces surface tension in the alveolus and maintains alveolar stability at low lung volume. Adult respiratory distress syndrome still carries a very high morbidity and mortality. The surfactant system is vital to the maintenance of proper lung function, any type of surfactant deficiency, whether primary or secondary, will contribute significantly to the development of pulmonary pathophysiology. Various mechanisms in adult respiratory distress syndrome may be responsible for such alterations in the surfactant system. Surfactant replacement is now an established treatment for neonatal respiratory distress syndrome, reducing both incidence of complications and mortality. With the current knowledge of surfactant physiology and the pathophysiology of the adult respiratory distress syndrome exogenous surfactant treatment or stimulation of endogenous surfactant synthesis and secretion will prove to be beneficial in preventing and treating the adult respiratory distress syndrome. The study of clinical surfactant therapy for adult respiratory distress syndrome is just beginnig and this can be viewed as an area with exciting potential. As soon as surfactant preparations become more widely available trials should begin to define the role of surfactant treatment in the adult respiratory distress syndrome as an adjunct to available treatment techniques.

  • PDF

Study on effect of solution temperature on corrosion fatigue of high strength steel (고장력강의 부식피로에 미치는 용액온도의 영향에 관한 연구)

  • 유헌일
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.40-51
    • /
    • 1986
  • A study has been made of the corrosion fatigue of high strength low alloy steel in 3.5% NaCl solution under tension stress for solution temperature being 25.deg. C, 55.deg. C and 85 .deg. C. The main results obtained are as follows; 1) The corrosion fatigue crack growth rate curve could be divided into the First Region, the Second Region and the Third Region. 2) The corrosion fatigue crack growth rates in the First Region and the Second Region were Arrhenius temperature-dependent in this test range. The apparent activation energies for the corrosion fatigue cack growth rate were found to be 2000cal/mol in the First Region and 3700 cal/mol in the Second Region. 3) Hematite (Fe$_{2}$O$_{3}$) as the hexahedral crystal and magnetite (Fe$_{3}$O$_{4}$) as the octahedral crystal were observed in the corrosion products on the corrosion fatigue fracture surface at 85.deg. C and the anode fusion seem to be generated in the crack tip region at high temperature. 4) The complex environment effect ratio which was defined by the ratio of fatigue crack growth rate in corrosion environment to that in air might be considered not only a criterion estimating the effect of environment quantitatively but also an important parameter in the selection of the design stress for the fail safe design. The complex environment effect was not greater than ten in this test.

  • PDF

High-Temperature Drying of Bamboo Tubes Pretreated with Polyethylen Glycol Solution

  • Kang, Chun-Won;Chung, Woo-Yang;Han, Jae-Ok;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.139-146
    • /
    • 2017
  • This study was conducted to develop a new drying technology in order to quickly and massively dry bamboo tubes without crack and check. The bamboo tubes with the diameter of 45 mm - 68 mm had been impregnated in the solution of PEG-1000, and then were dried under room temperature and high temperature, respectively. The cracks occurred on all control specimens while no cracks were found on PEG treated specimens during drying at room temperature due to effect of PEG restraining the circumferential shrinkage of bamboo tube. But the drying period of this method was too long (200 days) compared to 10 hours of kiln drying. During fast high temperature drying, cracks occurred on all control specimens, but no cracks were found on PEG treated specimens, which could be accounted for more solidified PEG due to higher drying temperature and faster drying rate, and the tension set formed on the surface of bamboo tube in the early stage of drying owning to high drying temperature and low relative humidity. Thus, it is advised that PEG treated bamboo tube should be fast dried at high temperature in order to not only prevent crack or check in short drying period but also increase the dimensional stability of the products made of bamboo tubes.

Mechanical behavior of HPFRCC using limestone calcined clay cement (LC3) and oxygen plasma treated PP fibers

  • Sajjad Mirzamohammadi;Masoud Soltani
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.349-362
    • /
    • 2024
  • High-performance fiber-reinforced cement composites (HPFRCC) are new materials created and used to repair, strengthen, and improve the performance of different structural parts. When exposed to tensile tension, these materials show acceptable strain-hardening. All of the countries of the globe currently seem to have a need for these building materials. This study aims to create a low-carbon HPFRCC (high ductility) that is made from materials that are readily available locally which has the right mechanical qualities, especially an increase in tensile strain capacity and environmental compatibility. In order to do this, the effects of fiber volume percent (0%, 0.5%, 1%, and 2%), and determining the appropriate level, filler type (limestone powder and silica sand), cement type (ordinary Portland cement, and limestone calcined clay cement or LC3), matrix hardness, and fiber type (ordinary and oxygen plasma treated polypropylene fiber) were explored. Fibers were subjected to oxygen plasma treatment at several powers and periods (50 W and 200 W, 30, 120, and 300 seconds). The influence of the above listed factors on the samples' three-point bending and direct tensile strength test results has been examined. The results showed that replacing ordinary Portland cement (OPC) with limestone calcined clay cement (LC3) in mixtures reduces the compressive strength, and increases the tensile strain capacity of the samples. Furthermore, using oxygen plasma treatment method (power 200 W and time 300 seconds) enhances the bonding of fibers with the matrix surface; thus, the tensile strain capacity of samples increased on average up to 70%.

Solvent-Polymer Interactions for Stable Non-Aqueous Graphene Dispersions in the Presence of PVK-b-PVP Block Copolymer (PVK-b-PVP 블록 공중합체의 존재 하에서 안정한 비 수계 그래핀 분산액을 위한 용매-고분자 상호작용에 관한 연구)

  • Park, Kyung Tae;Perumal, Suguna;Lee, Hyang Moo;Kim, Young Hyun;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.18 no.3
    • /
    • pp.109-117
    • /
    • 2017
  • Poly(N-vinyl carbazole) (PVK) homopolymer, poly(4-vinylpyridine) (PVP) homopolymer, and PVK-b-PVP block copolymer were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and the polymers were used to prepare non-aqueous graphene dispersions with four different solvents, ethanol, N-methyl-2-pyrrolidone (NMP), dichloromethane (DCM), and tetrahydrofuran (THF). $^1H-$ and $^{13}C-NMR$ spectroscopy, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) were carried out to confirm the chemical structure of the polymers. Stability of graphene dispersions was measured by on-line turbidity measurement. Time-dependent Turbiscan Stability Index (TSI) values were interpreted in terms of surface tension (${\sigma}$) and solubility parameter (${\delta}$) among solvents, polymers, and graphene. It was confirmed that the solubilities of polymer and surface tension between solvent and graphene affected the dispersion stability of graphene. PVK-b-PVP block copolymer could effectively maintain the low TSI values of graphene dispersions in ethanol and THF, which have been known as poor solvents for graphene dispersions. It can also be noted that DCM shows good dispersion stability comparable to NMP, which has been known as the best solvent for graphene dispersion.

Experimental Study of Desalting Methods Using Ethyl Alcohol for Archaeological Cast Iron Objects (에틸알코올 용매를 이용한 주조철제유물의 탈염 실험 연구)

  • Lee, Hye Youn;Cho, Ju Hye
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.95-104
    • /
    • 2015
  • Excavated archaeological cast iron objects in improper storage are quickly corroded and disintegrated into block and powder finally. Hence desalination treatment which is a way of removing internal corrosive factors, especially chloride ion, is an important process. But desalination is often omitted or objects are dehydrated by alcohol because the destruction of objects could occur during desalting. Although current desalting methods mostly use an aqueous alkali solution, $OH^-$ ions of water could accelerate corrosion and broaden internal cracks cause of high surface tension. Therefore this study experimented desalting using ethyl alcohol, which is low surface tension, to investigate an effect of desalination. As a result, desalting using ethyl alcohol showed the similar or more effective results of desalting using water. In addition, as aspects of desalting safety, ethyl alcohol desalting method was smaller destruction of objects and extraction of Fe from the objects than the aqueous alkali solution. However, this study explored the possibility of desalting methods using organic solvent in fieldwork, so the results would provide basic date for making the safe and effective desalting method for archaeological cast iron objects through further experiments.

Emulsion Polymerization and Surface Properties of Perfluoroalkylethyl Acrylate/Acrylate/Glycidyl Methacrylate Copolymers (퍼플로오로알킬에틸아크릴레이트/아크릴레이트/그리시딜메타크릴레이트 공중합체의 유화중합 및 그들의 표면특성)

  • Yoon, Jong-Kook;Lee, Jung-Hee;Kim, Ji-Soo;Lee, Young-Hee;Lee, Dong-Jin;Kim, Han-Do
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.170-176
    • /
    • 2012
  • A series of acrylic copolymers containing perfluoroalkyl acrylate were synthesized by 2-step emulsion polymerization of variety of acrylate monomers (ethyl acrylate, butyl acrylate or methyl methacrylate) with perfluoroalkyl ethyl acrylate (PFA) and glycidyl methacrylate (GMA) monomers. This study focused on effects of monomer compositions (the kind of acrylate monomer, contents of PFA and GMA) and composition of surfactants [(sodium dodecyl sulphate/nonylphenol 10mole ethoxylate (NP-10)] and initiator content on the contact angles and surface free energy. It was found that the copolymer having an optimum composition (BA : 87 wt%, GMA : 8.7 wt% and PFA : 4.3 wt%) was shown to be quite surface active [surface free energy : 19.89 mN/m and contact angles : $103.5^{\circ}$ (water) and $78.7^{\circ}$ (methylene iodide)] in the solid state. This result suggests that the optimal copolymer containing fluorinated monomer synthesized in this study have high potential as a low surface energy material, which may have high oil- and water-repellent surface and have been proposed as acrylic syntan for leather and also as soil-resistant/oil and water repellent coating for textiles and wood etc.

Effect on Nonionic Surfactant Solutions on Wetting and Absorbancy of Cotton Fabrics (비이온계 계면활성제 수용액이 면직물의 습윤특성에 미치는 영향)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.8
    • /
    • pp.1444-1452
    • /
    • 2001
  • Textile materials are frequently in contact with surfactant solutions during their manufacturing or finishing processes as well as cleaning processes in use. Liquid wetting, wicking and absorbency of textile materials, and the liquid properties, surface characteristics and pore geometry of textile materials, and the liquie-solid interactions, In this paper, 10 different nonionic surfactants, including Span 20, Twen 20, 40, 60, 80, 21, 61, 81, 65, 85, were used. The surfactants were characterized by their hydrophile-lipophile-balance (HLB) values, structures, and surface tensions. The 0.1g/dL and 1.0g/dL surfactant solutions, which were both above critical micelle concentration (CMC), were used to see the concentration effects on the wetting and absorbency of cotton fabrics. The wetting behavior and liquid retention properties of hydrophobic cotton fabrics with different nonionic surfactant solutions are reported. The contact angles are greatly decreased and the water retention values are greatly increased by adding most of the surfactants studied into the system. The extents of this effects are influenced by the characteristics of surfactants and its solutions. Hydrophilic surfactants which have low number of carbon atoms or unsaturated hydrophobe structures are more effective in improving the wetting and absorbancy of hydrophobic cotton fabrics. The water retention of hydrophobic cotton fabrics has positive relations with $cos{\theta}$, adhesion tension and work of adhesion. The 1.0g/dL surfactant solutions show similar, but slightly improved wetting and absorbency characteristics of hydrophobic cotton fabrics compared to the 0.1g/dL surfactant solutions.

  • PDF