• 제목/요약/키워드: Low Speed Wind-Tunnel Test

검색결과 61건 처리시간 0.017초

베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성 (Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface)

  • 이동호;조형희
    • 한국유체기계학회 논문집
    • /
    • 제8권4호
    • /
    • pp.27-38
    • /
    • 2005
  • The present study investigated the effect of relative position of the blade on blade surface heat transfer. The experiments were conducted in a low speed wind tunnel with a stationary annular turbine cascade. The test section has a single turbine stage composed of sixteen guide vanes and blades. The chord length of the blade is 150 mm and the mean tip clearance of the blade is $2.5\%$ of the blade chord. The Reynolds number based on blade inlet velocity and chord length is $1.5{\times}105$ and mean turbulence intensity is about $3\%$. To investigate the effect of relative position of blade, the blade at six different positions in a pitch was examined. For the detailed mass transfer measurements, a naphthalene sublimation technique was used. In general, complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as a laminar flow separation, relaminarization, flow acceleration, transition to turbulence and tip leakage vortices. The results show that the blade relative position affects those heat transfer characteristics because the distributions of incoming flow velocity and turbulence intensity are changed. Especially, the heat transfer pattern on the near-tip region is significantly affected by the relative position of the blade because the effect of tip leakage vortex is strongly dependent on the blade position. On the pressure side, the effect of blade position is not so significant as on the suction side surface although the position and the size of the separation bubble are changed.