• Title/Summary/Keyword: Low Speed Wind-Tunnel Test

Search Result 61, Processing Time 0.027 seconds

NUMERICAL ANALYSIS OF THE GUST GENERATOR FOR KARI LOW SPEED WIND TUNNEL (KARI 중형 아음속 풍동용 돌풍 발생기의 수치해석)

  • Park Y. M.;Kwon K. J.;Lee S. W.;Kim T. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.275-279
    • /
    • 2005
  • The vortex convection and induced flow field behind the KARI 3m x 4m LSWT gust generator was computed by using Computational Fluid Dynamics. For the accurate simulation of vortex convection, inviscid, laminar, Spalart-Allmars k-e and k-w turbulence models were tested with the NAL gust generator configuration and Spalart-Allmaras turbulence model was selected for the prediction of induced flow field behind the KARI LSWT gust generator. The wind tunnel test was also carried out at KARI LSWT and the results were compared with CFD prediction.

  • PDF

Development of Magnus Effect Measurement Technique for Spinning Projectile (회전 발사체용 마그너스 효과 특정기법의 개발)

  • Oh, Se-Yoon;Kim, Sung-Cheol;Lee, Do-Kwan;Choi, Joon-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • The Magnus effect measurement apparatus was designed and built for spinning wind tunnel model which would simulate the rotation of projectiles. Prior to the high speed test, the ground functional test and the low speed test were carried out in the Agency for Defense Development's Low Speed Wind Tunnel(ADD-LSWT) at spin rates from about 6,000 to 10,000 rpm. Magnus force and moment were measured on the spinning projectile model at velocity of 100 m/s. It was shown that the Magnus force and moment were linear function of spin parameter. The test results were compared with Magnus test run on the same configuration in the Arnold Engineering Development Center's Propulsion Tunnel 4T(AEDC-4T).

Wind Tunnel Test for the Inflation Characteristics of the Korean Low Cost Low Altitude Aerial Delivery System (한국형 저비용 저고도 공중보급 체계용 낙하산 전개 특성 풍동시험)

  • Kim, Seung Pil;Jung, Insik;Kwon, Kybeom;Choi, Younseok;Chung, Hyoungseog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.345-351
    • /
    • 2017
  • A wind tunnel test for the scaled parachute models was performed to verify aerodynamic characteristics for practical usage of Korean low cost low altitude aerial delivery system. The cruciform shaped cargo parachute models for heavy and light weight were ejected into wind tunnel test section; and the drag forces acting on the models in steady condition were measured in accordance with velocity. Also, the maximum opening forces during inflation were obtained and captured by a high speed camera to analyze the inflation characteristics and evaluate the design of the low cost aerial delivery system. The results showed a reliable stability and met the design requirement of delivery operation system for R.O.K Air Force.

Belly Sting Model Support Interference Effect of NASA Common Research Model at Low Speed Wind Tunnel (저속 풍동시험 시 NASA Common Research Model의 Belly Sting 모형 지지부에 의한 간섭효과에 관한 연구)

  • Cha, Kyunghwan;Kim, Namgyun;Ko, Sungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Computational Fluid Dynamics (CFD) was performed under low-speed wind tunnel test conditions using a 29.7% scale model of the NASA common research model. A wind tunnel test was conducted to measure the aerodynamic coefficient of the CRM with Belly sting model support configuration at a low Reynolds number of 0.3×106 and it was compared with the aerodynamic coefficient of CFD analysis. In order to verify the validation of the analysis, a computational analysis under the conditions of the advance research was performed and compared. The interference effect of the Belly sting model support affected not only the fuselage but also the main and tail wings.

Wind-induced vibrations and suppression measures of the Hong Kong-Zhuhai-Macao Bridge

  • Ma, Cunming;Li, Zhiguo;Meng, Fanchao;Liao, Haili;Wang, Junxin
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.179-191
    • /
    • 2021
  • A series of wind tunnel tests, including 1:50 sectional model tests, 1:50 free-standing bridge tower tests and 1:70 full-bridge aeroelastic model tests were carried out to systematically investigate the aerodynamic performance of the Hong Kong-Zhuhai-Macao Bridge (HZMB). The test result indicates that there are three wind-resistant safety issues the HZMB encounters, including unacceptable low flutter critical wind speed, vertical vortex-induced vibration (VIV) of the main girder and galloping of the bridge tower in across-wind direction. Wind-induced vibration of HZMB can be effectively suppressed by the application of aerodynamic and mechanical measures. Acceptable flutter critical wind speed is achieved by optimizing the main girder form (before: large cantilever steel box girder, after: streamlined steel box girder) and cable type (before: central cable, after: double cable); The installations of wind fairing, guide plates and increasing structural damping are proved to be useful in suppressing the VIV of the HZMB; The galloping can be effectively suppressed by optimizing the interior angle on the windward side of the bridge tower. The present works provide scientific basis and guidance for wind resistance design of the HZMB.

Prediction of Aerodynamic Characteristics of the Grid Fins using Low/High Fidelity Methods (저/고 충실도 기법을 이용한 그리드핀 공력 특성 예측)

  • Ki-Hoon Hur;Hyunjae Nam;Kyungjin Lim;Yeongbin Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.149-158
    • /
    • 2023
  • To predict the aerodynamic characteristics of the grid fins from subsonic to supersonic speeds, low fidelity SW as well as CFD SW were applied. VLM(Vortex Lattice Method) and SE(Shock-Expansion) method were used at subsonic and supersonic speed domain respectively for the rapid prediction of low fidelity SW. For 2 configurations of the grid fins, the CFD computations and tests using the trisonic wind tunnel were also performed to compare the results of the grid fins. The results of low fidelity SW, CFD SW and the wind tunnel tests data were agreed well each other. Through further research on the grid fins, the effective parameters of the grid fin configurations according to the speed regime will be investigated.

The Effect of Folding Wing on Aerodynamics and Power Consumption of a Flapping Wing

  • Lee, Seunghee;Han, Cheolheui
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.26-30
    • /
    • 2016
  • Experimental study on the unsteady aerodynamics analysis and power consumption of a folding wing is accomplished using a wind tunnel testing. A folding wing model is fabricated and actuated using servo motors. The flapping wing consists of an inboard main wing and an outboard folding wing. The aerodynamic forces and consumed powers of the flapping wing are measured by changing the flapping and folding wings inside a low-speed wind tunnel. In order to calculate the aerodynamic forces, the measured forces are modified using static test data. It was found that the effect of the folding wing on the flapping wing's total lift is small but the effect of the folding wing on the total thrust is larger than the main wing. The folding motion requires the extra use of the servo motor. Thus, the amount of the energy consumption increases when both the wings are actuated together. As the flight speed increases, the power consumption of the folding wing decreases which results in energy saving.

Chaotic vibration characteristics of Vertical Axis Wind Turbine (VAWT) shaft system

  • C.B. Maheswaran;R. Gopal;V.K. Chandrasekar;S. Nadaraja Pillai
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.215-220
    • /
    • 2023
  • We study the progressive full-scale wind tunnel tests on a high solidity vertical axis wind turbine (VAWT) for various tip speeds and pitch angles to understand the VAWT shaft system's dynamics using 0-1 Test for chaos. We identify that while varying rotor speed (tip speed) of the turbine, the system's dynamics change from periodic to chaotic through quasiperiodic and strange non-chaotic (SNA) states. The present study is the first experimental evidence for the existence of these states in the VAWT shaft system to the best of our knowledge. Using the asymptotic growth value Kc in 0-1 test, when the turbine operates at the low tip speeds and high pitch angles for low incoming wind speeds, the system behaves periodic (Kc ≈ 0). However, when the incoming wind speed increases further the system's dynamics shift from periodic to chaotic vibrations through quasi-periodic and SNA. This phenomenon is due to the dynamic stalling of blades which induces chaotic vibration in the VAWT shaft system. Further, the singular continuous spectrum method validates the presence of SNA and differentiates the SNA from chaotic vibrations.

Estimation of Flow Uniformity in Water Tunnel by Using CFD Analysis (전산유동 해석을 이용한 수동의 유동 균질성 평가)

  • Lim, Y.T.;Chang, J.W.;Kim, M.S.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.12 no.3
    • /
    • pp.13-24
    • /
    • 2004
  • It is easier to view flow visualization by using a water tunnel rather than a smoke wind tunnel because of low speed at same Reynolds number. Using a water tunnel also produces more definite flow visualization by the use of various color dyes. The flow uniformity in test section is very significant for accuracy of the test because most flow experiments elicit results through the installation of a model in uniform flow. The purpose of small-size desktop-type water tunnel is not to produce quantitative measurements, but rather to give a visualization of the fluid flow phenomenon. However, uniformity in the test section affects the accuracy of the results. Accordingly, this research estimates uniformity in a water tunnel test section by using the commercially available CFD code FLUENT. Results of the CFD analysis show that the flow uniformity of the test section is good.

  • PDF

Prediction of the Aerodynamic Noise Generated by Pantograph on High Speed Trains (고속철도 판토그래프의 공력소음 기여도 연구)

  • Han, Jae Hyun;Kim, Tae Min;Kim, Jeung Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.425-431
    • /
    • 2013
  • Nowadays, high speed train has settled down as a fast and convenient environment-friendly transportation and it's need is gradually increasing. However increased train speed leads to increased aerodynamic noise, which causes critically affects comfortability of passengers. Especially, the pantograph of high speed train is protruded out of train body, which is the main factor for increased aerodynamic noise. Since aerodynamic noise caused pantograph should be measured in high speed, it is difficult to measure it and to analysis aerodynamic noise characteristics due to the various types of pantograph. In this research, aerodynamic noise of pantograph is predicted by CFD (Computational Fluid Dynamic) and FW-H (Ffowcs Williams-Hawkings) equation. Also, Wind tunnel test results and numerical simulation results were compared. As a result, Simulation results predicting sound pressure level is very similar with wind tunnel test result. To analyze contribution of the pantograph to the noise of high-speed train, simulation results compared with measurement results of exterior noise. The simulation reuslts found that pantograph is a dominant noise source of high-speed trains's exterior noise in low frequency section. This dominant noise was come out from vortex shedding of the panhead in the pantograph. This research will be utilized for reduce sound pressure level of pantograph.

  • PDF