• 제목/요약/키워드: Low Specific Speed

검색결과 256건 처리시간 0.026초

복합재료 보링바의 동적 특성에 관한 연구 (A Study on the Dynamic Characteristics of the Composite Boring Bar)

  • 황희윤;김진국;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.206-210
    • /
    • 2003
  • Machining of deep holes with conventional boring bars frequently induce chatter vibration because of their low dynamic stiffness which is defined as the product of static stiffness and damping of conventional boring bar materials. In addition, the specific stiffness ($E/{\rho}g$) of boring bars is more important than the static stiffness to increase the fundamental natural frequency of boring bars in high speed machining. Therefore, boring bar materials should have high static stiffness and high damping as well as high specific stiffness. The best way to meet requirements is to employ fiber reinforced composite materials for high speed boring bars because composite materials have high static stiffness, high damping and high specific stiffness compared to conventional boring bar materials. In this study, the dynamic characteristics of carbon fiber epoxy composite boring bars were investigated. From the metal cutting test, it was found that the chatter was not initiated up to the ratio of length to diameter of 10.7 at the rotating speed of 2,500 rpm.

  • PDF

산성환경 중에서 구상흑연주철재의 마멸-부식거동에 관한 연구 (The Study on the Wear-Corrosion Behavior of Ductile Cast Iron in the Acidic Environment)

  • 임우조;박동기
    • Tribology and Lubricants
    • /
    • 제18권4호
    • /
    • pp.299-304
    • /
    • 2002
  • This paper reports the studies on the wear-corrosion behavior of ductile cast iron in the acidic environment. In atmosphere and variety of pH solution, specific wear rate and wear-corrosion characteristics of GCD 60 with various sliding speed and distance were investigated. And electrochemical polarization test of GCD 60 was examined in the environment of various pH values. The main results are as following : As the contact pressure increases, the critical velocity of specific wear rate becomes transient at low sliding speed. As pH value becomes low, wear-corrosion loss increases in the aqueous solution. As the corrosion environment is acidified, corrosion potential of GCD 60 becomes noble and corrosion current density increases.

무급유공기압축기 개발을 위한 PTFE계 복합재료의 마찰마모 특성에 관한 연구 (A Study on the Effects of Friction and Wear Properties of PTFE Composites for Oil Free Air Compressor)

  • 김용직;정하돈;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.67-74
    • /
    • 2000
  • Recently, PTFE-polymide composites are being used self-lubricating parts for industrial field. Thus, this study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polymide composites. The friction and wear test was carried out for the different composition ratio under the atomsphere room temperature and constant load of 7.69N and their friction and wear properties were compared with each other at various sliding speed. notable results are summarized as follows. PTFE 100% showed that friction coefficient was almost same values at 0.94 and 1.88m/s but the value was decreased at 2.83m/s because the friction temperature is higher than low speed. PTFE 80%-PI 20% showed the lowest mean friction coefficient at 2.83m/s. PTFE 20-PI 80% showed the highest friction coefficient at 0.94m/s and the value was decreased at high speed but the value is higher than other materials except PTFE 100 %. PI 100% showed the highest friction coefficient at 0.94 and 1.88m/s becuase adhesive wear mainly occurred that speed. PTFE 100% showed highest specific wear rate on the whole. Specific wear rate of PTFE 80%-PI 20% was almost the same value with PTFE 20%-PI80%. PI 100%showed the lowest value at high sliding speed because the friction surface was thicken and carbonated by high friction temperature.

  • PDF

비속도 150급 수직배럴형 다단 원심펌프 개발 (Development of Vertical Barrel Type Multistage Pump)

  • 유일수;박무룡;황순찬;김성기;윤의수
    • 한국유체기계학회 논문집
    • /
    • 제15권1호
    • /
    • pp.13-20
    • /
    • 2012
  • A vertical-axis multistage pump with low specific speed was developed, satisfying performance requirements such as flow rate, total head, and NPSH. The developed pump was designed through conceptual design, configuration design, and performance analysis by CFD which were established in KIMM. The prototype pump's mechanical wholesomeness besides hydraulic performances were verified by running test, performance test, and reliability test.

Miller 사이클을 이용한 중형 디젤 기관 성능 개선 (Improving the performance of a Medium Speed Diesel Engine Using Miller Cycle)

  • 김동훈;김기두;하지수;김호익;김주태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.248-255
    • /
    • 2002
  • Miller cycle was studied and analyzed by engine performance simulation to achieve very low fuel consumption and to meet the IMO NOx regulation on a medium speed diesel engine. Based on the performance simulation results the intake valve closing time for HYUNDAI HiMSEN 6H21/32 engine was set at 0deg.ABDC(After Bottom Dead Center). Also, the simulation results indicated that significant NOx reduction could be achieved with low reduction of fuel consumption. The performance simulation investigated the effect of compression ratio and turbocharger on fuel consumption and NOx concentration in combination with Miller cycle. The results indicated a significant reduction of fuel consumption with keeping NOx concentration. The results of performance simulation were compared with measured data to verify simulation results. The comparison showed the maximum error was 2.34% in exhaust temperature. Also, the experimental result showed that improvement in BSFC(Brake Specific Fuel Consumption) was 5.8g/kwh with keeping NOx level similar to simulation result.

Trailing edge geometry effect on the aerodynamics of low-speed BWB aerial vehicles

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권4호
    • /
    • pp.283-296
    • /
    • 2019
  • The influence of different planform parameters on the aerodynamic performance of large-scale subsonic and transonic Blended Wing Body (BWB) aircraft have gained comprehensive research in the recent years, however, it is not the case for small-size low subsonic speed Unmanned Aerial Vehicles (UAVs). The present work numerically investigates aerodynamics governing four different trailing edge geometries characterizing BWB configurations in standard flight conditions at angles of attack from $-4^{\circ}$ to $22^{\circ}$ to provide generic information that can be essential for making well-informed decisions during BWB UAV conceptual design phase. Simulation results are discussed and comparatively analyzed with useful implications for formulation of proper mission profile specific to every BWB configuration.

과급을 이용한 저온 디젤 연소의 운전영역 확장 및 연료소비율 저감 (Expansion of Operating Range and Reduction of BSFC in Low Temperature Diesel Combustion with Boosting)

  • 심의준;한상욱;장진영;박정서;배충식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3013-3018
    • /
    • 2008
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range, brake specific fuel consumption (BSFC) and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range. The result showed that operating range with boost was expanded up to 41.9% compared to naturally aspirated LTC condition due to increased mixing intensity. The boosted LTC engine showed low BSFC value and dramatically reduced soot emission under all operating range compared with high speed direct injection (HSDI) mode. Finally, this paper presents the boosted LTC map of emission and the strategy of improved engine operating range.

  • PDF

마스네슘 합금 판재 (AZ31)의 온도별 성형 특성 분석 (A study on forming characteristics of magnesium alloy (AZ31) on various temperatures)

  • 이한규;라원빈;홍소담;이창환
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, in the surge of global environmental issues, there has been a great attention to lightweight materials in purpose of saving energy. Magnesium alloys not only have low specific gravity, and superb specific stiffness, but are also excellent in blocking vibrations and electromagnetic waves. So demand for this material is getting bigger rapidly throughout the industry. In this study, we examined the improvement of formability of magnesium alloy AZ31 material in warm working. Drawing, bending and shearing process were carried out by varying the forming temperature and the forming speed, and the influence of the variables on each process was studied. In the experiments, the high forming temperature and low forming speed results in high formability in the drawing process and the bending process. In the shearing process, as the forming temperature increases, the length of the fracture decreases.

AC8A-T6 알루미늄 합금재의 절삭가공 특성에 관한 연구 (A Study on the Characteristics of Machining for AC8A-T6 Aluminum Alloy)

  • 최현민;김경우;김우순;김용환;김동현;채왕석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.192-197
    • /
    • 2002
  • In this study, examined the cutting characteristics of alumuminum alloy AC8A-T6 that is used to present car piston materials. And in been holding materials machining empirically escape as result that experiment comparison changing the cutting speed and feed on various condition to choose efficient machining condition. The following results can be summarized from this research. 1. As the cutting speed decreased, principal cutting force and thrust cutting force is increased, and reason that cutting force interacts greatly in the low cutting speed is thought by result by BUE's stabilization. 2. The feed speed and cutting speed increase, friction factor is decrescent and the cause appeared the thrust cutting force is fallen than cutting force relatively because chip flow according to increase of the feed rate is constraint. 3. Though specific cutting resistance grows cutting area and the feed rate are few, the cause was expose that shear angle decreases by rake face of tool gets into negative angle remarkably as wear of a cutting tool or defect part of workpiece is cut. 4. Cutting speed do greatly depth of cut is slow, surface roughness examined closely through an experiment that becomes bad, and know that it can get good surface that process cutting speed because do feed rate by 0.1mm/rev low more than 250m/min to get good surface roughness can.

  • PDF

펠레타이저 공정변수와 인공경량골재의 성형체와 소성체 물성과의 상관관계 (Correlation to the Physical Properties of Green and Sintered Body of Artificial Lightweight Aggregate with the Pelletizing Variables)

  • 위영민;이기강
    • 한국세라믹학회지
    • /
    • 제44권10호
    • /
    • pp.568-573
    • /
    • 2007
  • For the manufacturing lightweight fine aggregate, clay and waste material was formed by pelletizer. The fine aggregate of 1-5 mm diameter was formed by diameter 76 cm pelletizer disc. Pelletization variables were : (1) pelletizer disc angle, (2) speed of revolution of pelletizer, (3) added pelletization time. Green and sintered aggregate were measured specific gravity, absorption rate and average size. The optimum condition were found that the pelletization variables were angle at $70^{\circ}$, speed of revolution of pelletizer at 23.2 rpm, and water/solid ratio at 1/5. At these conditions, it was formed that fine aggregate green whose average size was $2.0{\sim}3.35mm$. Specific gravity and average size are increased with low angle of disc and fast revolution speed of disc. Specific gravity and average size were not distinctly influenced by added pelletization time. Sintered aggregate was distinctly influenced by properties of green.