• 제목/요약/키워드: Low Pressure and Low Flow

검색결과 1,593건 처리시간 0.033초

진동하는 외부 실린더에 의해 유발되는 비정상 압력의 실험적 고찰 (Experimental Investigation of Unsteady Pressure Generated by Oscillating Outer Cylinder)

  • 심우건
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.519-526
    • /
    • 1995
  • Experiments have been performed to test the analytical tools developed concurrently for the motion-related unsteady pressure in annular passages. The outer cylindrical body was oscillated by a shaker in either rocking motion about a hinge-point or lateral translation motion. In the equilibrium configuration the two bodies are either concentric or eccentric, in the plane of oscillation or normal to it. The unsteady pressure generated by the oscillatory motion with low amplitudes (displacement/radius) was measured on wall of the fixed inner cylinder at various axial and azimuthal locations. The unsteady pressure were compared with theoretical predictions, and agreement was found to be within 10%. Experiments have been shown that the effect of flow velocity on the unsteady pressure is minimal and the pressure increases more or less with oscillatory motion, for low flow velocities (Re = 2 900).

임계노즐에서 발생하는 비정상유동에 관한 연구 (Study of the Unsteady Gas Flow in a Critical Nozzle)

  • 김재형;김희동;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF

Wind flow characteristics and their loading effects on flat roofs of low-rise buildings

  • Zhao, Zhongshan;Sarkar, Partha P.;Mehta, Kishor C.;Wu, Fuqiang
    • Wind and Structures
    • /
    • 제5권1호
    • /
    • pp.25-48
    • /
    • 2002
  • Wind flow and pressure on the roof of the Texas Tech Experimental Building are studied along with the incident wind in an effort to understand the wind-structure interaction and the mechanisms of roof pressure generation. Two distinct flow phenomena, cornering vortices and separation bubble, are investigated. It is found for the cornering vortices that the incident wind angle that favors formation of strong vortices is bounded in a range of approximately 50 degrees symmetrical about the roof-corner bisector. Peak pressures on the roof corner are produced by wind gusts approaching at wind angles conducive to strong vortex formation. A simple analytical model is established to predict fluctuating pressure coefficients on the leading roof corner from the knowledge of the mean pressure coefficients and the incident wind. For the separation bubble situation, the mean structure of the separation bubble is established. The role of incident wind turbulence in pressure-generation mechanisms for the two flow phenomena is better understood.

복합화력 발전용 재열사이클 가스터빈의 운전상태 분석 (Analysis of Operation Conditions of a Reheat Cycle Gas Turbine for a Combined Cycle Power Plant)

  • 윤수형;정대환;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제9권6호
    • /
    • pp.35-44
    • /
    • 2006
  • Operation conditions of a reheat cycle gas turbine for a combined cycle power plant was analyzed. Based on measured performance parameters of the gas turbine, a performance analysis program predicted component characteristic parameters such as compressor air flow, compressor efficiency, efficiencies of both the high and low pressure turbines, and coolant flows. The predicted air flow and its variation with the inlet guide vane setting were sufficiently accurate. The compressor running characteristic in terms of the relations between air flow, pressure ratio and efficiency was presented. The variations of the efficiencies of both the high and low pressure turbines were also presented. Almost constant flow functions of both turbines were predicted. The current methodology and obtained data can be utilized for performance diagnosis.

감압 분위기가 직류 열 플라즈마에 미치는 영항 (The Effects of the Reduced Pressure on DC Thermal Plasma)

  • 김원규;황기웅
    • 대한전기학회논문지
    • /
    • 제39권11호
    • /
    • pp.1227-1234
    • /
    • 1990
  • This study is to figure out the properties of the DC thermal plasma at low pressure. For this purpose, a temperature measurement system utilizing emission spectroscopy has been set up and its measurement method and results have been described. At low pressure, the plasma has shown drastic changes in its appearance. The discharge characteristics under low pressure have been measured and analyzed. The temperature of thermal plasma generated in this research has been ranged from 10, 000 K to 15, 000 K. Temperature has been observed to increase with the flow rate and magnetic field strength. The temperature characteristics at low pressure has been observed to coincide with the reported results.

  • PDF

저압 급수가열기 추기노즐 주변 동체의 감육 완화에 관한 연구 (A Study on the Relief of Shell Wall Thinning around the Extraction Nozzle of Low Pressure Feedwater Heater)

  • 서혁기;박상훈;김형준;김경훈;황경모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2631-2636
    • /
    • 2008
  • The most components and piping of the secondary side of domestic nuclear power plants were manufactured carbon-steel and low-alloy steel. Flow accelerated corrosion leads to wall thinning (metal loss) of carbon steel components and piping exposed to the flowing water or wet steam of high temperature, pressure, and velocity. The feedwater heaters of many nuclear power plants have recently experienced sever wall thinning damage, which increases as operating time progress. Several nuclear power plants in Korea have also experienced wall thinning damage in the shell wall around the impingement baffle. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the experimental results based on down-scaled experimental facility. The experiments were performed based on several types of impingement baffle plates which are installed in low pressure feedwater heater.

  • PDF

사각 단면을 갖는 철도차량 주위의 3차원 유동해석 (Three-Dimensional Flow Analysis around Rolling Stock with Square Cross Section Using Low Re ${\kappa}-{\epsilon}$)

  • 장용준
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.772-777
    • /
    • 2006
  • Three-dimensional numerical study is performed for the flow analysis around the rolling stock with square cross section (Mugungwha train model). The height (H) of rolling stock is considered as the characteristic length and the total length of rolling stock is 40 which correspond to 1/2 unit of rolling stock. The gap between the surface and rolling stock is 0.17H which is average value. The relative velocity between the surface and rolling stock is assumed to be zero and Re=10,000 based on the characteristic length. Low Re ${\kappa}-{\epsilon}$[15] is employed for the calculation of turbulence which resolve all the way to the solid surface (laminar sub-layer). Large flow separation occurred at the front head of train and a pair of vortex is generated on both top and side of rolling stock. The behavior of vortices on the top of the rolling stock is believed to affect the performance of the pantograph which should be intensively investigated. The difference between the high pressure in the front stagnation region of train and the low pressure in the rear separated region causes a large pressure drag. A large pair or vortex are generated in the rear of train and the size of vortex is increased more than the size of cross section of train.

배추의 압축탈수특성에 관한 연구 (Compression and Dewatering of Chinese Cabbage)

  • 김영중;이동현;이용범
    • Journal of Biosystems Engineering
    • /
    • 제19권1호
    • /
    • pp.3-8
    • /
    • 1994
  • An experiment on the expression and dewatering of chinese cabbage was conducted in order to investigate its dewatering behavior. Chopped cabbage was packed into cylinder and pressed by piston upto the predetermined pressure on Instron-1000. The rates of dewatering were affected domintantly by the applied pressure, but not significantly by the packed amount of cabbage in the cylinder. The pressure effect was increased very abruptly at first, but the increase rate was very low at high pressure greater than 20 MPa, showing great deviation from linear dependence of flow rate on pressure in Darcy's Law. Therefore, water expression from cabbage was not Newtonian flow of water through cell wall. In fact, the squeezed water contained a lot of solid particles, about 3% of solid cabbage particles, showing destruction of cell wall. It appeared that compression and dewatering of vegetable wastes in the low pressure. under 20 MPa, is more desirable for later treatment of the dewater. More researches are needed in order to develop a treatment method for the solid particles in the expressed water before an expeller treatment system can be applied to vegetable wastes.

  • PDF

가압형 경수로 압력용기 재료인 저합금강의 동적 붕산 부식 실증 연구 (Dynamic Boric Acid Corrosion of Low Alloy Steel for Reactor Pressure Vessel of PWR using Mockup Test)

  • 김성우;김홍표;황성식
    • Corrosion Science and Technology
    • /
    • 제12권2호
    • /
    • pp.85-92
    • /
    • 2013
  • This work is concerned with an evaluation of dynamic boric acid corrosion (BAC) of low alloy steel for reactor pressure vessel of a pressurized water reactor (PWR). Mockup test method was newly established to investigate dynamic BAC of the low alloy steel under various conditions simulating a primary water leakage incident. The average corrosion rate was measured from the weight loss of the low alloy steel specimen, and the maximum corrosion rate was obtained by the surface profilometry after the mockup test. The corrosion rates increased with the rise of the leakage rate of the primary water containing boric acid, and the presence of oxygen dissolved in the primary water also accelerated the corrosion. From the specimen surface analysis, it was found that typical flow-accelerated corrosion and jet-impingement occurred under two-phase fluid of water droplet and steam environment. The maximum corrosion rate was determined as 5.97 mm/year at the leakage rate of 20 cc/min of the primary water with a saturated content of oxygen within the range of experimental condition of this work.

Labyrinth Seal 의 누설 특성 실험 (An Experimental Study on the Leakage Characteristics of a Labyrinth Seal)

  • 하현천;변형현;박철현
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.141-146
    • /
    • 1999
  • An experimental investigation on the leakage characteristics of a labyrinth seal, high-low seal, is studied. Pressure distribution and leakage flow rate are measured along with the shaft speed and the pressure difference between the entrance and the exit. Pressure distribution vanes almost linearly along the seal and the leakage flow rate increases as the increase of the pressure difference. Furthermore, it is found that both the shaft speed and the shaft vibration have no influence on the leakage of the labyrinth seal.

  • PDF