• 제목/요약/키워드: Low Pressure Combustion

검색결과 436건 처리시간 0.021초

EFFECT OF MIXTURE PREPARATION IN A DIESEL HCCI ENGINE USING EARLY IN-CYLINDER INJECTION DURING THE SUCTION STROKE

  • Nathan, S. Swami;Mallikarjuna, J.M.;Ramesh, A.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.543-553
    • /
    • 2007
  • It is becoming increasingly difficult for engines using conventional fuels and combustion techniques to meet stringent emission norms. The homogeneous charge compression ignition(HCCI) concept is being evaluated on account of its potential to control both smoke and NOx emissions. However, HCCI engines face problems of combustion control. In this work, a single cylinder water-cooled diesel engine was operated in the HCCI mode. Diesel was injected during the suction stroke($0^{\circ}$ to $20^{\circ}$ degrees aTDC) using a special injection system in order to prepare a nearly homogeneous charge. The engine was able to develop a BMEP(brake mean effective pressure) in the range of 2.15 to 4.32 bar. Extremely low levels of NOx emissions were observed. Though the engine operation was steady, poor brake thermal efficiency(30% lower) and high HC, CO and smoke were problems. The heat release showed two distinct portions: cool flame followed by the main heat release. The low heat release rates were found to result in poor brake thermal efficiency at light loads. At high brake power outputs, improper combustion phasing was the problem. Fuel deposited on the walls was responsible for increased HC and smoke emissions. On the whole, proper combustion phasing and a need for a well- matched injection system were identified as the important needs.

과급을 이용한 저온 디젤 연소의 운전영역 확장 및 연료소비율 저감 (Expansion of Operating Range and Reduction of BSFC in Low Temperature Diesel Combustion with Boosting)

  • 심의준;한상욱;장진영;박정서;배충식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3013-3018
    • /
    • 2008
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range, brake specific fuel consumption (BSFC) and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range. The result showed that operating range with boost was expanded up to 41.9% compared to naturally aspirated LTC condition due to increased mixing intensity. The boosted LTC engine showed low BSFC value and dramatically reduced soot emission under all operating range compared with high speed direct injection (HSDI) mode. Finally, this paper presents the boosted LTC map of emission and the strategy of improved engine operating range.

  • PDF

가스 및 분무화염의 연소소음 특성에 관한 실험연구 (Combustion Noise Characteristics in Gas and Liquid Flames)

  • 김호석;백민수;오상헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.81-91
    • /
    • 1994
  • Combustion noise involved with chemical heat release and turbulent process in turbopropulsion systems, gasturbine, industrial furnaces and internal engines is indeed noisy. The experimental study reported in this paper is made to identify a dominant combustion noise in jet flames. Gaseous propane and kerosene fuel have been used with air as the oxidizer in a different jet combustion systems. Combustion and aerodynamic noise are studied through far field sound pressure measurements in an anechoic chamber. And also mean temperature and velocities and turbulent intensities of both isothermal and reacting flow fields were measured. It is shown that axial mean velocity of reacting flow fields is higher about 1 to 3m/sec than that of cold flow in a gaseous combustor. As the gaseous fuel flow rate increases, the acoustic power increases. But the sound pressure level for the spray flame decreases with increasing equivalence ratio. The influence of temperature in the combustion fields due to chemical heat release has been observed to be a dominant noise source in the spray flame. The spectra of combustion noise in gaseous propane and kerosene jet flame show a predominantly low frequency and a broadband nature as compared with the noise characteristics in an isothermal air jet.

  • PDF

충돌벽면이 직분식 LPG의 분무 및 연소 특성에 미치는 영향에 관한 실험 연구 (A Experimental Study on the Effects of the Impingement-wall on the Spray and Combustion Characteristics of Direct-Injection LPG)

  • 황성일;정성식;염정국
    • 동력기계공학회지
    • /
    • 제19권2호
    • /
    • pp.49-56
    • /
    • 2015
  • As an alternative fuel that can be used in SI engine, LPG is one of clean fuels with larger H/C ratio compared to gasoline, low $CO_2$ emission, and small amount of pollutants such as sulfur compounds. When LPG is used in spark ignition engine, volumetric efficiency of the engine can be improved and pumping loss can be reduced by performing direct injection into the combustion chamber instead of port fuel injection. LPG-DI engine allows for lean combustion and stratified combustion under low load. In case of stratified combustion, air fuel ratio can be greatly increased compared to theoretic mixture ratio combustion. Improved thermal efficiency of the engine and reduced pumping loss can be expected from stratified combustion. Accordingly in this study, an experimental apparatus for visualization was designed and manufactured to study the combustion process of LPG after injection and ignition, intended to examine ignition probability and combustion characteristics of spark ignition direct injection(SIDI) LPG fuel. Ambient pressure, ambient temperature and fuel injection pressure were found as important variables that affect ignition probability and flame propagation characteristics of LPG-air mixture. Also, it was verified that the injected LPG fuel can be directly ignited by spark plug under appropriate ambient conditions.

75톤급 액체로켓엔진 연소기의 저압 조건에서 수행된 연소안정성 시험 (Combustion Stability Rating Test under Low Pressure Condition of a 75-tonf-class LRE Thrust Chamber)

  • 이광진;강동혁;김문기;안규복;한영민;최환석
    • 한국추진공학회지
    • /
    • 제14권5호
    • /
    • pp.92-100
    • /
    • 2010
  • 75톤급 기술검증용 연소기의 연소안정성 시험이 저압 조건에서 수행되었다. 이 시험에 사용된 두 개의 연소기 헤드 중 하나는 631개의 분사기를 가지며, 다른 하나는 721개의 분사기를 가진다. 631개의 분사기를 갖는 연소기 헤드는 연소압력 30 bar에서 자발 불안정이 발생하였고 721개의 분사기를 갖는 연소기 헤드는 동일한 연소압력과 동일한 유량 조건에서 고주파 연소안정성이 유지됨을 보였다. 그러나 721개의 분사기를 갖는 연소기 헤드는 연소압력 20 bar에서 자발 불안정이 발생하였고 이러한 결과로부터 연소기 헤드의 형상은 안정성 경계 영역을 변화시킴을 알 수 있었다.

컨테이너 선박의 엔진부하와 엔진 연소공기 급기방식에 따른 기관실 차압 특성에 관한 연구 (A Study on the Characteristics of Differential Pressure According to Main Engine Load and a Process of Supply Air For Combustion)

  • 구근회;성치언;황유진;이재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.822-826
    • /
    • 2009
  • In case of engine room of ship, it uses type 2 ventilation system which supplies outside air forcibly by engine room ventilation fan, and naturally discharges air to outlet through low-pressed casing. The advantage of type 2 ventilation is that it makes inside with bi-pressure status to discharge contaminated materials to outside naturally. However, there is a phenomenon that pressure is greatly different between outside and inside due to huge amount of air supply by engine room ventilation fan. Therefore, we went aboard a container vessel which is on test run to analyze differential pressure with micronanometer by engine load and by combustion air supply method of engine. As a result, as engine load decreases (50, 75, 100%), the differential pressure between outside and inside tends to increase by 35% average, and the difference of pressure was 6.5 times maximum by combustion air supply method of engine.

표면연소기의 연소진동음에 관한 연구 (A Study on Combustion-Driven Oscillations in a Surface Burner)

  • 한희갑;권영필
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1582-1590
    • /
    • 1998
  • Combustion-driven oscillations in a surface burner have been investigated to clarify their characteristics. A model combustor is made and the oscillation frequencies are measured for various dimensions of the combustor. It is found that there are two modes of oscillations; one is the 'acoustic mode' at high frequencies, associated with the acoustic mode of the combustion system and the other is the 'combustion mode' at low frequencies around 100 Hz, associated with the instability of the flame. Acoustic mode is excited when the surface burner is placed where the phase of particle velocity leads that of acoustic pressure by $90^{\circ}$, for all the combustion conditions. Combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. Combustion mode is greatly influenced by the inlet temperature of the premixed gas. When the inlet temperature is very high, the combustion mode does not occur.

Effect of Mixture Flow Rate on Emission Characteristics of Laminar Premixed CH4/Air Flame with Changing Combustor Pressure

  • Ma, Hai-quan;Song, Jae-hyeok;Kang, Ki-joong;Choi, Gyung-min;Kim, Duck-jool
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.269-271
    • /
    • 2012
  • To investigate emission characteristics of laminar premixed CH4/air flame, combustion experiments were conducted at three flow rates (5.3L/min, 10.6L/min, 15.5L/min) with changing the combustor pressure(-30Kpa-30Kpa). It was found that with increasing flow rate, NOx emission increased in high pressure condition, while decreased in low pressure condition; and the emission of CO decreased with increasing flow rate. For the influence of pressure, emission of NOx increased with increasing pressure regardless of flow rates, while CO emission decreased on the contrary.

  • PDF

Multi Zone Modeling을 이용한 온도 성층화의 효과를 갖는 예혼합압축자기착화엔진의 압력상승률 저감에 대한 모사 (Effect of Thermal Stratification for Reducing Pressure Rise Rate in HCCI Combustion Based on Multi-zone Modeling)

  • 권오석;임옥택
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.32-39
    • /
    • 2009
  • The HCCI engine is a next generation engine, with high efficiency and low emissions. The engine may be an alternative to SI and DI engines; however, HCCI's operating range is limited by an excessive rate of pressure rise during combustion and the resulting engine knock in high-load. The purpose of this study was to gain a understanding of the effect of only initial temperature and thermal stratification for reducing the pressure-rise rate in HCCI combustion. And we confirmed characteristics of combustion, knocking and emissions. The engine was fueled with Di-Methyl Ether. The computations were conducted using both a single-zone model and a multi-zone model by CHEMKIN and modified SENKIN.

RCM을 이용한 디젤 분무 거동 및 자발화 특성에 관한 실험적 연구 (An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics to use Rapid Comperssion Machine)

  • 안재현;김형모;신명철;김세원
    • 한국분무공학회지
    • /
    • 제8권3호
    • /
    • pp.33-40
    • /
    • 2003
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community, In order to understand the detailed diesel flame involving the complex physical processes, it is quite desirable to diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation, flame stabilization and pollutant formation, In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes, In terms of the macroscopic spray combustion characteristics, it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle, With increasing the cylinder pressure, there is a tendency that the of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force, Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF