• Title/Summary/Keyword: Low Power Laser

검색결과 370건 처리시간 0.03초

반동 전단 구조 인텐서티 측정에 의한 제진재 적용과 그에 따른 에어컨 실외기 구조 방사 소음 저감 (Placing Constrained Layer Damping Patches Using Reactive Shearing Structural Intensity in Order to Reduce the Radiated Sound Power of a Air-Conditioner Outdoor Unit)

  • 김규식;강연준;진심원;정인화;이정우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.333-337
    • /
    • 2003
  • The use of reactive shearing structural intensity to place small patches of constrained layer damping material in order to achieve the largest reduction in the radiated sound power of Air-conditioner outdoor unit is described. The normal surface velocity of each panel was measured using a laser doppler vibrometer. Experimental results indicated that patches of constrained layer damping material placed over areas of high reactive structural intensity reduced the radiated sound power significantly more than patches of the same area placed over areas of low reactive structural intensity

  • PDF

상변화 냉각시스템의 정량적 성능지수 연구 (A Study on Quantitative Performance Index for Phase-Change Cooling Systems)

  • 장명언;송혜은
    • 한국군사과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.237-245
    • /
    • 2020
  • In this paper, I introduce Phase-Change Cooling for thermal management of high power devices that can be applied to High Power Laser and Electric Propulsion Systems which are composed of multiple distributed superheat sources. Phase-Change Cooling can be good used to efficient cooling of their heat sources. Phase-Change Cooling has extremely high efficiency of two-phase heat transport by utilizing heat of vaporization, relatively low flow rates and reduced pumps power. And I suggest TPI(Thermal Performance Index) which is a quantitative performance index of Phase-Change Cooling for thermal management. I quantify the performance of Phase-Change Cooling by introducing TPI. I present the test results of TPI's changing refrigerant, heat sink and flow rate of the Phase-Change Cooling system through the experiments and analyze these results.

DWDM 송신을 위한 파장안정화 고출력 DFB LD Module (Wavelength stabilized high power cw DFB laser module for DWDM transmission)

  • 김종덕;이희태;박경현;송만규;강승구
    • 한국광학회지
    • /
    • 제11권3호
    • /
    • pp.206-209
    • /
    • 2000
  • DWDM 시스템에서 외부광변조기와 함께 중장거리 전송을 위한 광원으로 사용이 가능한 파장안정화 고출력 CW DFB 레리저 모듈을 셀계 및 제작하였다. 얇은 두께의 soild etalon과 PD array를 사용하여 단순하고 compact한 파장모니터 기능을 광원 모듈에 내장함으로써 DFB LD의 파장 변화를 감지 및 제어 할 수 있도록 하였다. 또한 높은 출력 특성을 가진 DFB LD와 43% 이상의 높은 광결합 효율을 가지는 모듈을 가지는 모듈의 광학적 설계 및 packaging 기술을 활용하여 mA의 CW 전류인가 조건에서 13nW의 고출력특성ㅇ르 가지는 모듈을 제작하여 그 특성을 분석하였다.

  • PDF

어븀 첨가 광섬유형 링 레이저와 광섬유 격자 기반 센서를 이용한 원거리의 온도 및 전류 측정 (Remote Measurement of a Distant Temperature and Current using Fiber Bragg Grating Sensors and Erbium-doped Fiber Ring Laser)

  • 손경락;심준환;양규식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1257-1262
    • /
    • 2008
  • A long-distance remote sensing of temperature and current based on a fiber Bragg grating (FBG) is proposed and demonstrated. The thermal expanding effect of the epoxy and the Er-doped fiber ring laser (EFRL) are applied to the sensor system to enhance the temperature and current sensitivity. An EFRL with a 5 km-single-mode fiber and a FBG shows a high extinction ratio of more than 60 dB and a low power fluctuation of less than 1 dB. The metal wires are used to supply the current to the sensors. When the NOA65 puts on the FBG as a thermal expanding material, the temperature and current sensitivity of the lasing wavelength shift are about $30\;pm/^{\circ}C$ and 3pm/mA, respectively. The proposed sensing scheme is useful for measurement of current or temperature at a distant object of more than several km.

하이브리드 용접방식을 이용한 박판 및 후판용접공정 (Hybrid Welding Process for Sheet Metal and Narrow Gap Fill Pass)

  • 최해운;신현명;임문혁
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.978-983
    • /
    • 2008
  • An application of innovative laser+GMA hybrid welding process is presented for reducing bead humping defects in high speed welding and increasing side wall fusion in narrow groove welding without torch or wire oscillation. In this hybrid process, the laser heat input is applied adjacent to the weld pool at a relatively low power density to produce a wider, flatter weld bead. In bead on plate in sheet metal gauges, the hybrid process was able to produce hump-free welds from 70ipm (${\sim}1780mm/min$) to over 150ipm (${\sim}3810mm/min$) of the travel speed compared to the un-assisted GMAW process. A square-butt joint in 15mm A572 Gr50 steel welds was investigated. A square butt joint with a gap of 3.2mm was filled with 6 passes. Liquid Nitrogen calorimetry and innovative $CO_2$ laser reflective optics were also developed to demonstrate the concept of hybrid welding.

Characteristics of Carbon Nanotube FED

  • Uemura, Sashiro;Yotani, Junko;Nagasako, Takeshi;Kurachi, Hiroyuki;Yamada, Hiromu;Ezaki, Tomotaka;Maesoba, Tsuyoshi;Nakao, Takehiro;Ito, Masaaki;Saito, Yahachi;Yumura, Motoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.860-865
    • /
    • 2004
  • Field emission display(FED) using carbon nanotubes (CNT) as field emitters is expected to large-area panels with high luminance and low power consumption. In order to perform the uniform luminance with low driving voltage, we introduced a new electrode to apply higher electric potential over the CNT cathode in 2003.[1] In the study, we described the luminance uniformity of the panel and the improvement of emission uniformity by increasing the emission-site density. The luminance uniformity of the several ideal dots which were selected over the display area in the panel was 2.8%. [2] The CNT cathode was irradiated by excimer-laser, which was effective to improve emission uniformity and lower driving voltage. A prototype of CNT-FED character display was performed for middle size message displays. The prototype panel had 48 x 480-dots and the resolution was 1-mm. The panel realized high luminance at low power consumption. It will be important characteristics for legible and ubiquitous displays. [3]

  • PDF

특허맵과 AHP를 활용한 최적의 LCD 저온폴리실리콘 결정화 기술 선정 (Determining an Optimal Low Temperature Polycrystalline Silicon Crystallization Technology of LCD using Patent Map and AHP)

  • 김관열;이장희
    • 지식경영연구
    • /
    • 제12권1호
    • /
    • pp.39-52
    • /
    • 2011
  • Many LCD manufacturers continue to develop the technologies of LCD manufacturing processes for the reduction of production cost, power consumption and high-resolution. The LTPS (Low Temperature Polycrystalline Silicon) crystallization technology is important for rearranging the internal structure of liquid crystal grain by adding certain energy to amorphous silicon and turning it into poly-silicon in order to manufacture LCD with better performance. We consider 14 existing technologies of LTPS crystallization in the LCD manufacturing and present an intelligent analysis methodology using patent map and AHP (Analytic Hierarchy Process) analysis for determining an optimal LTPS crystallization technology. By using patent map analysis, we easily understand the development process and mega-trend of LTPS crystallization technologies and their relationship. By using AHP analysis, we evaluate 14 LTPS technologies. Through the use of proposed methodology, we determine the Continuous Wave Laser Lateral Crystallization technology as an optimal one.

  • PDF

디지털 프린터에 적용되는 회전 다각형 디스크의 소음특성 (Qualitative Noise Characteristics of Rotating Polygonal Disk Applied to Digital Printer Systems)

  • 조준현;김형채
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1425-1429
    • /
    • 2007
  • Consumer's product selection measures are being shifted from the units' operational performance to overall performance. Low noise, low vibration, and low power consumption rate, etc. which used to be additional quality indices, now become vital performance factors. Especially, noise and vibration characteristics are being considered as equivalent to/or even more critical than operational performance in certain products such as office machines and home entertainment systems, which share the same space with human being's daily life. Therefore, noise reduction and sound quality improvement technology becomes an inevitable design issue for those applications. Qualitative noise characteristics of rotating polygonal disk applied to digital printer systems are presented. Overall sound pressure level change and tonal noise variation with respect to the geometrical properties of polygonal disk, operational speed, and others are briefly discussed based on experimental results.

  • PDF

디지털 프린터에 적용되는 회전 다각형 디스크의 소음특성 (Qualitative Noise Characteristics of Rotating Polygonal Disk Applied to Digital Printer Systems)

  • 조준현;김형채
    • 한국소음진동공학회논문집
    • /
    • 제18권6호
    • /
    • pp.606-611
    • /
    • 2008
  • Consumer's product selection measures are being shifted from the units' operational performance to overall performance. Low noise, low vibration, and low power consumption rate, etc. which used to be additional quality indices, now become vital performance factors. Especially, noise and vibration characteristics are being considered as equivalent to/or even more critical than operational performance in certain products such as office machines and home entertainment systems, which share the same space with human being's daily life. Therefore, noise reduction and sound quality improvement technology becomes an inevitable design issue for those applications. Qualitative noise characteristics of rotating polygonal disk applied to digital printer systems are presented. Overall sound pressure level change and tonal noise variation with respect to the geometrical properties of polygonal disk, operational speed, and others are briefly discussed based on experimental results.

Modeling and Experimental Study of Radio-frequency Glow Discharges and Applications for Plasma Processing

  • Kang, Nam-Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.179-179
    • /
    • 2012
  • Low pressure radio-frequency glow discharges are investigated using theoretical modeling and various experimental diagnostic methods. In the calculations, global models and transformer models are developed to understand the chemical kinetics as well as the electrical properties such as the effective collision frequency, the heating mechanism and the power transferred to the plasma electrons. In addition, Boltzmann equation solver is used to compensate the effect of the electron energy distribution function (EEDF) shape in the global model, and the general expression of energy balance for non-Maxwellian electrons is developed. In the experiments, a number of traditional plasma diagnostic methods are used to compare with calculated results such as Langmuir probe, optical emission spectroscopy (OES), optical absorption spectroscopy (OAS) and two-photon absorption laser-induced fluorescence (TALIF). These theoretical and experimental methods are applied to understand several interesting phenomena in low pressure ICP discharges. The chemical and physical properties of low pressure ICP discharges are described and the applications of these methods are discussed.

  • PDF